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ABSTRACT

The Rate-Controlled Constrained-Equilibrium (RCCE) model reduction scheme for chemical kinetics provides acceptable accuracies with a
number of differential equations much lower than the number of species in the underlying Detailed Kinetic Model (DKM). It was originally
proposed by James C. Keck (see [1-3] and references therein). To yield good approximations the method requires accurate identification of the rate
controlling constraints. Until recently, a drawback of the RCCE scheme has been the absence of a fully automatable and systematic procedure to
identify the most effective constraints for a given range of thermodynamic conditions and a required level of approximation. In a recent paper [4], we
have proposed a new methodology for such identification based on a simple algebraic analysis of the results of a preliminary simulation that probes
the underlying DKM, focusing on the behavior of the degrees of disequilibrium (DoD) of the individual chemical reactions. The new methodology
is based on computing an Approximate Singular Value Decomposition of the Actual Degrees of Disequilibrium (ASVDADD) obtained as functions
of time in the probe DKM simulation. The procedure identifies a low dimensional subspace in DoD space, from which the actual DoD traces do
not depart beyond a fixed distance related to the first neglected singular value of the matrix of DoD traces. The effectiveness and robustness of
the method has been demonstrated [4-6] for various cases of a very rapid supersonic nozzle expansion of the products of hydrogen and methane
oxycombustion and for the case of methane/oxygen ignition.

The general idea behind the RCCE method is that for each particular problem, set of conditions, and acceptable degree of approximation there
is a threshold time scale which essentially separates the “relatively fast” equilibrating kinetic mechanisms from those that slow down and control
the spontaneous relaxation towards equilibrium. The “relatively slow” mechanisms control the interesting part of the non-equilibrium dynamics in
that they effectively identify a low dimensional manifold in composition space, where, for the chosen level of approximation, the dynamics can be
assumed to take place. In general, the rate controlling mechanisms are slow because they have to go through one or more bottlenecks. For example,
the three-body reactions are slow because they require three-body collisions which occur much less frequently than two-body collisions. As a result,
the bottleneck mechanism is that of three-body collisions and the associated rate-limiting constraint is the total number of moles, which would not
change if all three-body reactions were frozen. The “narrowness” of each bottleneck can be measured by the characteristic time with which the
associated constraint would relax towards its equilibrium value in the absence of interactions sustaining the non-equilibrium state. As emphasized
for example in Ref. [3], the RCCE method enjoys a very appealing built-in general feature of strong thermodynamic consistency. However, the
main difficulties in its practical use have been: (a) identifying the kinetic bottlenecks and (b) constructing an efficient set of constraints implied by
them. Several efforts have addressed these problems with varying degrees of success (see [4] for references).

The RCCE method models the local non-equilibrium states as partially equilibrated states with the local composition XXXCE = N j/∑
nsp
k=1 Nk (where

of course N j represents the molar amount of species j) that minimizes the Gibbs free energy subject to the local values of temperature T , pressure
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ci(NNN) = ∑
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The Lagrange multipliers γEL
i and γRC

i are called elemental and constraint potentials, respectively. For the `-th chemical reaction ∑
nsp
j=1 ν j`A j = 0,

the stoichiometric balance requires that bEL
i` = ∑

nsp
j=1 aEL

i j ν j` = 0. The advantage of the RCCE approximation is that the composition depends only on
the nel+nc parameters γEL

i and γRC
i , instead of the nsp molar amounts of species which can be many more. In the CFD modeling context, this means

that in addition to the continuity, Navier-Stokes, and energy balance equations, the nsp species balance equations can be effectively substituted by
the nel + nc balance equations for the elemental and constraint potentials, thus achieving a substantial model reduction that has a built-in strong
thermodynamic consistency and does not require to cut the number of species nor the number of reactions to be taken into account. The method
has been used with excellent results. For example (see e.g. [4; 5]) for the ignition delay of hydrogen-oxygen mixtures (nsp = 8, nel = 2), the RCCE
methods yields excellent agreement with a fully detailed model predictions by using only nc = 2 constraints, with a savings of 8− (2+ 2) = 4
differential equations. The computational savings is much more important for higher hydrocarbons, for example, for methane-oxygen ignition
(nsp = 29, nel = 3) excellent results [4; 5] are obtained with nc = 13, with a savings of 29− (3+13) = 13 differential equations and without giving
up the ability of predicting fine details such as the typical temperature and composition overshoots occurring immediately following ignition.

The recently proposed ASVDADD algorithm [4] allows the identification of optimal sets of constraints with no need for deep knowledge and
understanding of chemical kinetics fundamentals such as chain branching, radical formation, etc., thus making the RCCE method accessible to a
broad range of scientists and engineers. The algorithm is based on the following basic observation. The degree of disequilibrium (DoD) of reaction



`, defined by φ` = lnr+` /r−` where r±` are the forward and reverse rates of reaction `, is given in general by
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=− 1
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The dimensionless entropic chemical potentials Λ j can be viewed as the components of the nsp-vector ΛΛΛ. Also the nel rows of the elemental
composition matrix aEL

i j can be viewed as the components of the nsp-vectors aaaEL
i . Due to relation ∑

nsp
j=1 aEL

i j ν j` = 0, the nel-dimensional linear span
of vectors aaaEL

i is the left null space of the matrix ν j` of stoichiometric coefficients, often called the inert subspace. The projection of vector ΛΛΛ onto
the inert subspace can be written as ΛΛΛspan({aaaEL

i }) = ∑
nel
i=1 γEL

i aaaEL
i where the coefficients γEL

i can be readily computed (see, e.g., the appendix of Ref.

[7]). Since ΛΛΛspan({aaaEL
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the “overall DoD vector.” In fact, it contains the information about the DoD’s φ` of all the reactions, φ` = ∑
nsp
j=1 ΛDoD, j ν j`, and it is the null vector

if and only if all reactions are equilibrated, in the sense that their DoD’s are all zero. Notice than within the RCCE model, from Eq. (1), we have
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Now let us consider a CFD numerical simulation in which the index z = 1, . . . ,Z labels the space-time discretization (i.e., z labels both the finite
volumes or elements of the mesh as well as the time grid). If we adopt the full DKM and solve the full set of balance equations including those for
all the species, the resulting overall DoD vectors form an nsp×Z matrix ΛDKM

DoD, jz = ΛDoD, j(z) that has rank r = nsp−nel. If instead the local states
are described according to the RCCE assumption defined above, the nsp×Z matrix ΛRCCE

DoD, jz = ΛRCCE
DoD, j(z) = ∑

nc
i=1 γRC

i (z)aRC
i j has rank equal to the

(typically much smaller) number nc of constraints. In other words, even if the number nsp of chemical reactions in the underlying DKM is in the
hundreds and therefore the nsp×Z matrix ΛDKM

DoD, jz has hundreds of rows and rank nsp−nel, its approximation within the RCCE model, ΛRCCE
DoD, jz, is

of much lower rank nc.
In order to identify the constraint matrix aRC

i j that allows such approximation, the idea behind the ASVDADD algorithm is to run a preliminary
full DKM computation, possibly on a submesh of the full problem and for a shorter time so span a limited range of values of temperature, pressure
and compositions. From such computation we obtain the r×Z matrix DDD with elements ΛDKM

DoD, jz. Then we compute its singular value decomposition
(SVD). As is well known, the result can be written formally in reduced form as DDD =UUU diag(σσσ)VVV where UUU is an nsp× r unitary matrix whose r
columns represent an orthonormal basis for the column space of DDD, VVV is an r×P unitary matrix whose r rows represent an orthonormal basis for
the row space of DDD, and σσσ is the r-vector of singular values of DDD in decreasing order. Explicitly, recalling that r = rank(DDD) = nsp− nel, the SVD
decomposition of the overall DoD matrix can be written as

Λ
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r

∑
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r
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U jk γ
DKM
kz where σ1 ≥ σ2 ≥ ·· · ≥ σr > 0 and we defined γ

DKM
kz = σk Vkz (5)

Next, we use the well-known Eckart-Young theorem of linear algebra, whereby if in the SVD of matrix DDD we set to zero the singular values for
k > nc (i.e., we set σnc+1 = σnc+2 = · · ·= σr = 0) then we obtain the “closest” rank≤ nc approximation DDDapprox of the original matrix DDD in the sense
that the Frobenius norm distance ‖DDDapprox−DDD‖Fro between the two matrices is minimal. Such norm distance is equal to (∑r

k=nc+1 σ2
k)

1/2) and can
be taken as a measure of the error introduced by the approximation. Therefore, if we accept such level of approximation, we can setup an optimal
RCCE model with nc constraints by selecting as our constraint matrix the first nc columns of the matrix UUU . In fact, by setting

ASVDADD choice of RCCE constraints: aRC
i j =U ji for i = 1, . . . ,nc we obtain Λ
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Interestingly, the r columns of the matrix UUU obtained from the SVD decomposition of the overall DoD matrix DDD resulting from the preliminary
DKM simulation provides at once the entire set of optimal RCCE constraints, already ordered in decreasing order of importance. Essentially, in
conclusion, the ASVDADD algorithm identifies all the constraints that characterize the kinetic bottlenecks of the underlying DKM in effect in the
chosen range of conditions, and it ranks them in terms of their relative contribution to the overall degree of disequilibrium. These features make the
algorithm suitable for adaptive or tabulation strategies and therefore opens up the advantages of the RCCE method to CFD simulation.

To reiterate, the ASVDADD algorithm for systematic RCCE constraint identification is based on analyzing how the degrees of disequilibrium
(DoD) of the chemical reactions behave in a full DKM test simulation. Geometrically, the procedure identifies a low-dimensional subspace in DoD
space from which the actual DoD traces do not depart beyond a fixed distance related to a preset tolerance level.

The effectiveness and robustness of the methodology has already been demonstrated in [4,6] for several test cases of increasing complexity in the
framework of oxy-combustion of hydrogen (8 species, 24 reactions) and methane (29 species, 133 reactions) as well as in [5] where a demonstration
is given for the even more complex full GRI-Mech 3.0 kinetic scheme (53 species, 325 reactions) for methane/air combustion including nitrogen
oxidation.

The excellent performance of the ASVDADD constraints confirm the conclusion that the new algorithm essentially resolves the difficulties that
have prevented the RCCE method from a more widespread use in model order reduction of detailed combustion kinetic models of hydrocarbon
fuels.

In future work we will show that the same model order reduction logic can find natural extensions also in the more general field of nonequilibrium
thermodynamics, in particular in the general frameworks discussed in [8,9].

The RCCE equations can be integrated more efficiently by rewriting them as rate equations for the elemental and constraint potentials. These are
obtained by combining the species and energy balance equations, the kinetic equations, the ideal gas equation of state, and the linear combinations
ci(NNN) = ∑

nsp
j=1 aRC

i j N j that define the values ci of the constraints. As shown in Ref. 3, we obtain the following set of rate equations, where for



convenience we use β = 1/RT instead of the temperature and the notation N j = [N j]V for the number of moles of species j, u jj and cv jj for the
molar specific internal energy and heat capacity at constant volume of species j, Φ for the viscous dissipation function (usually negligible),
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i j Ṅ→j for i = 1, . . . ,nel (7)

nel

∑
k=1

γ̇
EL
k

nsp

∑
j=1

aEL
k j N jaRC

i j +
nc

∑
k=1

γ̇
RC
k

nsp

∑
j=1

aRC
k j N jaRC

i j = − β̇

β

nsp

∑
j=1

N jβu jjaRC
i j +

V̇
V

nsp

∑
j=1

N jaRC
i j +

nsp

∑
j=1

aRC
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where Ṅ→j and Ė→ denote the species and energy transport rates (positive if outgoing) and the bottleneck source terms are
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and of course the composition is that given by Eq. (1), i.e.,
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The above nel + nnc + 2 implicit differential equations together with the nsp Eqs. (12) can be solved for given values of Ė→, V (t), and the Ṅ→j , to
yield the nsp +2 state variables β(t), p(t), and N j(t), and the nel +nc constraint-potentials γEL

i (t) and γRC
i (t).

It is important to notice that in Eqs. (11) only the chemical reactions that are not equilibrated contribute to ċi,chem, i.e., only those for which
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nsp
m=1 aRC

im νm` 6= 0. In fact, from Eqs. (2), (14) and (6) we can write
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which shows that within the RCCE approximation, whereby we set to zero the singular values σnc+1 = σnc+2 = · · ·= σr = 0 and we set aRC

i j =U ji
for i = 1, . . . ,nc, the DoD’s are given by
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and therefore the reactions that contribute to ċi,chem, those with bRC
i` 6= 0, are those with a nonzero DoD.
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