
14th Joint European Thermodynamics Conference
Budapest, May 21–25, 2017

RATE EQUATIONS COMPATIBLE WITH THERMODYNAMICS

Angelo Morro1,∗

1DIBRIS, University of Genoa
∗ angelo.morro@unige.it

1 Introduction

Rate equations are commonly applied to describe microstructural effects on the macromotion or memory features associated with motion and
thermal behaviour of the body. Scalar, vector, and tensor quantities governed by rate equations are generally named internal variables. They trace
back to Duhem [1], §I.8, and Bridgman [2]. The first analysis within continuum thermodynamics seems to be that given in [3] while a review on the
subject is given in [4]. Rate equations with higher-order spatial derivatives are investigated in [5].

To fix ideas look at a solid and suppose that the set of independent variables consists of the deformation gradient F, the temperature θ, the
temperature gradient g and an internal (scalar, vector, or tensor) variable α so that the evolution is given by

α̇ = f (F,θ,g,α), (1)

the stress T, the Helmholtz free energy ψ, the entropy η, and the heat flux q too being functions of the same variables.
Two questions arise in connection with (1) and, generally, with the rate equations. Owing to the constitutive character, f is required to be

compatible with thermodynamics. Now we express the entropy inequality by assuming that

ρη̇≥−∇ · q
θ
+

ρr
θ
, (2)

where r is the energy supply (per unit mass) and a superposed dot denotes the material (or total) time derivative. The statement of the second law is
expressed by saying that, for all set of physically-admissible constitutive functions satisfying the balance equations, the inequality (2) must hold for
all times t and point x. We then have to determine the restrictions placed by the second law on f as well as on the other constitutive functions.

The second question is related to the time derivative occurring in (1). It may happen that the material properties indicate a more involved
derivative. Furthermore, if the internal variable is a vector or a tensor then the material time derivative is not objective (or frame-indifferent). The
literature exhibits several objective time derivatives. It is then conceptually of interest to check the compatibility of objective rate equations (1) with
the second law in the form (2) since the time derivative in (2) is necessarily the material one.

It is the purpose of this paper to examine the compatibility, with the second law of thermodynamics, of some rate equations involving objective
time derivatives.

2 Rate equations and Clausius-Duhem inequality

The local balance of mass, linear momentum, and energy read

ρ̇+ρ∇ ·v = 0,

ρv̇ = ∇ ·T+ρb,
ρε̇ = T ·D−∇ ·q+ρr,

where ρ is the mass density, v is the velocity, b is the body force, ε is the internal energy, and D is the stretching tensor. For the present purposes
there is no loss in generality by letting φ = q/θ. Hence substitution of ρr−∇ ·q from the balance of energy allows eq. (2) to be written in the form

−ψ̇−ηθ̇+
1
ρ

T ·D− 1
ρθ

q ·g≥ 0,

where ψ = ε−θη. Upon evaluation of ψ̇ and using the arbitrariness of ġ, θ̇, Ḟ we find

∂gψ = 0, η =−∂θψ, T = ρ∂FψFT ,

−∂αψ f − 1
ρθ

q ·g≥ 0.

If, in particular, f is independent of g then we have
∂αψ f ≤ 0,

that is a condition on ∂αψ and on the evolution function f .
This is so if α is a scalar. Now let α be the pair of a vector u and a tensor K, possibly u = q,K = T, and take the rate equations

u̇ = û(F,θ,g,D,u,K), K̇ = K̂(F,θ,g,D,u,K).

Hence the Clausius-Duhem inequality yields
∂Dψ = 0, ∂gψ = 0, η =−∂θψ



and
1
ρ

T ·D− 1
ρθ

q ·g−∂uψ · û−∂Kψ · K̂≥ 0.

For definiteness, by generalizing rate equations for heat conduction and viscosity we let

û =−νu− γg, K̂ =−ΛK+ΓD,

where ν,γ,Λ, and Γ are functions of F and θ. Upon substitution, the arbitrariness of D and g implies that the inequality holds if and only if

T = ρ∂FψFT +ρΓ∂Kψ, q = ρθγ∂uψ,

and
ν∂uψ ·u+Λ∂Kψ ·K≥ 0.

A simple model arises by taking ψ in the additive form

ψ = Ψ(F,θ)+ψw(w2)+ψK(K2).

As a consequence, ψ satisfies the inequality if and only if
ψ
′
w ≥ 0, ψ

′
K ≥ 0

while
T = ρ∂FψFT +2ρΓψ

′
K K, q = 2ρθγψ

′
u u.

We now examine the corresponding model by replacing the material time derivative with frame-indifferent derivatives. Indeed we restrict
attention to the following widely-used derivatives in continuum mechanics.
Corotational (or Green-Naghdi) time derivative. Look at the corotational time derivatives

�
u= u̇−Ωu,

�

K= K̇−ΩK+KΩ,

and state the evolution equations as
�
u= û,

�

K= K̂.

Hence, from
1
ρ

T ·D− 1
ρθ

q ·g−∂uψ · u̇−∂Kψ · K̇≥ 0

we have
1
ρ

T ·D− 1
ρθ

q ·g−∂uψ · (û+Ωu)−∂Kψ · (K̂+ΩK−KΩ)≥ 0.

Quite naturally one expects that the contribution of the spin tensor Ω to the dissipation is zero in that the choice of the frame of reference should
not affect the entropy growth. Of course we are not interested in the trivial case ∂uψ = 0, ∂Kψ = 0. Hence we let ψ be a function of the invariants
u2,u ·Ku, and K2, where K2 = K ·K. Since

∂uψ = 2∂u2 ψu+∂u·Kuψ(K+KT )u, ∂Kψ = ∂u·Kuψu⊗u+∂K2 ψK,

we find

∂uψ ·Ωu+∂Kψ · (ΩK−KΩ) = 2∂u2 ψu ·Ωu+∂K2 ψK · (ΩK−KΩ)

+∂u·Kuψ [(ωu) · (K+KT )u+(u⊗u) · (ΩK−KΩ)].

By the skew-symmetry of Ω it follows that u ·Ωu = 0. Moreover,

K · (ΩK−KΩ) = (KKT ) ·Ω− (KT K) ·Ω.

Since KKT and KT K are symmetric tensors, again in view of the skew-symmetry of Ω we obtain

K · (ΩK−KΩ) = 0.

Now, some rearrangements show that

(Ωu) · (K+KT )u+(u⊗u) · (ΩK−KΩ) = (Ωu) · (Ku)
+(Ωu) · (KT u)− (Ωu) · (Ku)− (Ωu) · (KT u) = 0.

Accordingly, if the free energy depends on the internal variables u,K via the invariants u2,u ·Ku, and K2,

ψ = ψ(F,θ,u2,u ·Ku,K2),

then the contribution of the corotational derivative to the entropy inequality equals that of the material time derivative via the evolution functions
û,K̂.

By merely replacing the generic spin tensor Ω with the spin tensor of the velocity field W we are dealing with the Jaumann derivative. We then

say that also with the Jaumann derivative,
◦
u,
◦
K, the contribution to the entropy inequality equals that of the material time derivative via the evolution

functions û,K̂.
Compatibility with the second law of thermodynamics holds depending on the functions û and K̂.
The Truesdell rate and the upper convected Oldroyd derivative are better investigated within the material description.



3 Rate equations in the material description

We now address attention to a thermoelastic material with memory for the heat conduction. The heat flux is subject to a rate equation of the form

�
q +λq =−α∇θ (3)

where
�
q = q̇−Lq+(∇ ·v)q

is the Truesdell rate of the vector q and λ > 0.
The corresponding material field qR of q is given by

qR = JqF−T , J = detF.

Moreover we have
J
�
q F−T =

˙JqF−T = q̇R. (4)

Right multiplication of (3) by JF−T and use of (4 give
q̇R +λqR =−αJ∇θF−T .

Let C = FT F denote the right Cauchy-Green tensor. Since

∇θ = ∇XθF−1, ∇θF−T = ∇XθC−1

then the rate equation becomes
q̇R +λqR =−αJC−1

∇Xθ. (5)

The material stress field TRR (second Piola stress) is given by

TRR = JF−1TF−T .

Hence the Clausius-Duhem inequality in the material description can be given the form [6; 7]

−ρR(ψ̇+ηθ̇)+ 1
2 TRR · Ċ−

1
θ

qR ·∇Xθ≥ 0. (6)

To describe the thermoelastic solid we let
θ,C,∇Xθ,qR

be the independent variables and ψ,η,TRR the constitutive functions while q̇R is given by (5). Upon evaluation of ψ̇ and substitution in (6) we obtain

−ρR(∂θψ+η)θ̇+( 1
2 TRR−ρR∂Cψ) · Ċ−ρR∂∇Xθψ ·∇Xθ̇

+ρR∂qR ψ · (λqR +αJC−1
∇Xθ)− 1

θ
qR ·∇Xθ≥ 0.

Hence it follows that
∂∇Xθψ = 0, TRR = 2ρR∂Cψ, η =−∂θψ (7)

and
∂qR ψ ·qR ≥ 0,

1
θ

qR = αJρRC−1
∂qR ψ.

Accordingly,

ψ = Ψ(θ,C)+
1

2θJρRα
qR ·CqR (8)

and
∂qR ψ ·qR =

1
θJρRα

qR ·CqR ≥ 0

in view of the positive definiteness of C. Hence the whole scheme is compatible with thermodynamics provided ψ has the form (8) and TRR,η are
given by (7).

The advantage of the material rate equation (5) versus the spatial rate equation (3) is that we can solve easily eq. (5) to find

qR(t) =−
∫ t

−∞

exp(−
t
∫
s

λ(ξ)dξ)α(s)J(s)∇θ(s)F−T (s)ds

whence

q(t) =− 1
J(t)

∫ t

−∞

exp(−
t
∫
s

λ(ξ)dξ)α(s)J(s)∇θ(s)F−T (s)dsFT (t). (9)

It is a natural consistency requirement that the solution (9) is independent of the choice of the reference configuration. In this connection let R0
be the reference configuration considered so far. Let R1 be an intermediate configuration such that

R0→ R1→ E

and F0 and F1 be the deformation gradients from R0 to R1 and from R1 to E . Hence

F(t) = F1(t)F0, J(t) = J1(t)J0.

Upon substitution we obtain

q(t) =− 1
J1(t)

∫ t

−∞

exp(−
t
∫
s

λ(ξ)dξ)α(s)J1(s)∇θ(s)F−T
1 (s)dsFT

1 (t)

thus proving the invariance.



4 Conclusions and remarks

The corotational derivative proves to be consistent with thermodynamics, subject to requirements on the evolution functions û,K̂. The Truesdell
rate is shown to be compatible with thermodynamics, the compatibility being ascertained within the material description of the balance equations
and the second law.

It is worth pointing out that here the occurrence of rates in the constitutive equations is taken in the normal form (1) and the compatibility involves
both the derivative and the constitutive function f . There are approaches where appropriate rates of the unknown fields enter the state space (or the
set of independent variables). This is done both with the material time derivative [8], e.g.

η = η̂(ε,υ, ε̇, υ̇), υ = 1/ρ,

and with the corotational time derivative [9; 10]. In such cases the thermodynamic analysis is based on a generalized Gibbs equation, with the
occurrence of additional “intensive quantities” [8] or Lagrange multipliers [9], thus introducing difficulties on the physical interpretation of the
model.
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