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ABSTRACT

Introduction

The purpose of the current work is the formulation of thermodynamic models for chemically and structurally inhomogeneous solids undergoing
finite deformation. In particular, these models are based on both ”standard” non-equilibrium thermodynamics [SNET: 1,2] and on the General
Equation for Non-Equilibrium Reversible-Irreversible Coupling [GENERIC: 3]. In particular, model formulations are obtained in this context in
[4] for non-isothermal generalizations of standard isothermal conservative (e.g., Cahn-Hilliard) and non-conservative (e.g., Allen-Cahn) diffuse
interface or ”phase-field” models for multicomponent, multiphase solids. In the isothermal context, isothermal models for geometrically non-linear
gradient solids with microstructure have recently been formulated in [5]. The current treatment is consistent with and subsumes previous work
on non-isothermal systems [e.g., 6]. In the context of no-flux boundary conditions, the SNET- and GENERIC-based approaches are shown to be
completely consistent with each other and result in equivalent temperature evolution relations. For more details, the reader is referred to [4,5].

For simplicity, attention is restricted here to the (simplest) case of a solid mixture consisting of two chemical components and two thermoelastic
solid phases. In this work, (three-dimensional) Euclidean vectors are represented by lower-case bold italic characters aaa,bbb, . . .. Second-order tensors
are represented by upper-case bold italic characters AAA,BBB, . . ., with III the second-order identity. The notation A ·B := Ai...Bi... (sum on repeated
indices) represents the scalar product of two tensors A and B of any order. Additional notation will be introduced as needed.

SNET-based formulation

In the formulation to follow, all fields are defined on the mixture reference configuration R with boundary ∂R and outward unit normal nnn. For
simplicity, assume that the two components do not react chemically. As well, all supplies of mass, momentum and energy are assumed negligible.
Let ρ1 and ρ2 represent the mass densities of the two components. Again for simplicity, assume that the mixture mass density ρ = ρ1 + ρ2 is
constant. In what follows, let ρ ≡ ρ1 and jjj ≡ jjj1, where jjj represents the component mass flux density. Adapting next the approach of [1] to the
current referential or Lagrangian setting relevant to geometrically non-linear solids, the balance relations

ρ̇ =−div jjj , ṁmm = divPPP , ε̇ = PPP ·∇χ̇χχ−divqqq , (1)

on R hold for component mass, mixture linear momentum, and mixture internal energy, balance, respectively. In these relations, mmm = ρχ̇χχ and ε

represent the mixture momentum and internal energy densities, respectively, with χχχ the mixture motion. Further, PPP is the momentum flux density,
and qqq represents the heat flux density. Assuming for simplicity that R is closed with respect to mass and momentum, the boundary conditions

jjj|
∂R ·nnn = 0 , PPP|

∂R nnn = 000 , qqq|
∂R ·nnn = q

∂R , (2)

hold on ∂R. Besides (1), the mixture entropy balance η̇ = π−divϕϕϕ is relevant to the current SNET-based formulation. In this relation, η represents
the entropy density, π the entropy production-rate density, and ϕϕϕ the entropy flux density. Let θ represent the (absolute) temperature and ϑ := θ−1.
In the current context of mass and heat diffusion [1], ϕϕϕ = q̌qq− µ̌ jjj in terms of the chemical potential µ and notation f̌ := ϑ f . Combining this with
the entropy balance and (1)1,3 yields the generalized Gibbs relation π = qqq ·∇ϑ− jjj ·∇µ̌+ P̌PP ·∇χ̇χχ+ µ̌ ρ̇+εϑ̇− ˙̌ψ based on the (negative) free entropy
density ψ̌ := ε̌−η = ϑψ, with ψ := ε−θη the free energy density as usual. For the current class of two-component, two-phase, inhomogeneous
thermoelastic solids, the (entropic) constitutive forms

ψ̌ = ψ̌(ϑ,∇χχχ,ρ,∇ρ,φ,∇φ) , ε = ∂ϑψ̌ , P̌PP = ∂
∇χχχ

ψ̌ , µ̌ = δρψ̌ , (3)

hold in the context of the generalized Gibbs relation above. Here, φ represents the (non-conservative) structural order parameter, and δxa :=
∂xa−div∂

∇xa is the variational derivative of the density a with respect to x. In the simplest case, the no-flux boundary conditions

∂
∇ρ

ε |
∂R ·nnn = 0 , ∂

∇ρ
η |

∂R ·nnn = 0 , ∂
∇φ

ε |
∂R ·nnn = 0 , ∂

∇φ
η |

∂R ·nnn = 0 , (4)

and integrand continuity result in the ”residual” form π = qqq ·∇ϑ− jjj ·∇µ̌− φ̇ δ
φ
ψ̌ for π. As usual, this motivates (in the simplest case) ”diagonal”

flux-force relations
qqq = θ

2KKK∇ϑ , jjj =−θDDD∇µ̌ , φ̇ =−θmδφψ̌ ; (5)

symmetry and non-negativity of the thermal conductivity KKK and mass diffusivity DDD, as well as non-negativity of the phase mobility m, are then
sufficient for non-negative entropy production π = (∇ϑ) ·θ2KKK (∇ϑ)+(∇µ̌) ·θDDD(∇µ̌)+(δ

φ
ψ̌) θm(δ

φ
ψ̌)> 0.



In summary, (1), (3), (4), and (5) result in the system

ρ̇ = divθDDD∇δρψ̌ , ṁmm = div∂
∇χχχ

ψ , c θ̇ = ϖ+divKKK ∇θ , φ̇ =−θmδφψ̌ , (6)

of evolution-field relations for (ρ,mmm,θ,φ) and boundary conditions

θDDD∇δρψ̌ |
∂R ·nnn = 0 , ∂

∇χχχ
ε |

∂R nnn = 000 , ∂
∇χχχ

η |
∂R nnn = 000 , −KKK ∇θ |

∂R ·nnn = q
∂R , (7)

from (2) via (3)3 and (5)1. In particular, (6)3 for θ̇ follows from (1)3, (3)1−3, and (5)1 in terms of the heat capacity c = −ϑ2∂
ϑ

ε ≡ ∂
θ
ε and the

volumetric heating rate density ϖ = ϖene +ϖdis, with

ϖene :=−θ(dχχχη)� χ̇χχ , ϖdis :=−(dρε)� ρ̇− (dφε)� φ̇ , (8)

its energetic and dissipative parts, respectively. In these relations, the operator notation

(dsa)� f := (∂sa) f +(∂
∇sa) ·∇ f , (dvvva)� fff := (∂vvva) · fff +(∂

∇vvva) ·∇ fff , (9)

has been introduced in terms of scalar s, f and vector vvv, fff quantities. The alternative forms

ϖdis = −(δρε) ρ̇− (δ
φ
ε) φ̇ = −(δρε) divθDDD∇δρψ̌+(δ

φ
ε) θmδ

φ
ψ̌

= (∇δρε) ·θDDD(∇δρψ̌)+(δ
φ
ε) θm(δ

φ
ψ̌)

(10)

also hold for ϖdis from (2)1, (4)1,3, and (6)1,4 via integration by parts and the divergence theorem. As will be seen below, the forms (8) for ϖene and
ϖdis also arise directly in the GENERIC-based model formulation, to which we now turn.

GENERIC-based formulation

The GENERIC [3]
ẋ = ẋ |rev + ẋ |irr , ẋ |rev = L DxE , ẋ |irr = M DxS , (11)

is a general formalism for the reversible (rev) and irreversible (irr) evolution of thermodynamic state variables x driven by energy DxE and entropy
DxS gradients mediated by the Poisson L and friction M operators. With respect to the scalar product 〈DxA,DxB〉 on functionals A,B and
definition 〈DxB,OTDxA〉 := 〈DxA,O DxB〉 of the operator transpose, L is (sympletic) skew-symmetric (i.e., LT =−L), and M (Onsager-Casimir)
symmetric, non-negative definite (i.e., M T =M and 〈DxA,M DxA〉> 0). These properties determine in turn those of the induced Poisson {A,B} :=
〈DxA,L DxB〉 and dissipation [A,B] := 〈DxA,M DxB〉 brackets. In terms of these brackets, Ȧ= {A,E}+[A,S] models the evolution of any A. In this
context, the orthogonality conditions L DxS = 0 and M DxE = 0 enforce energy conservation Ė = {E,E}= 0, and non-negative entropy production
Ṡ = [S,S]> 0. For more details, the reader is referred to [3]. As already done tacitly in the last section, in the relations to follow, operators such as
∇, div≡ ∇·, L , and M , operate on everything to their right (unless otherwise indicated).

Consider now the application of the GENERIC to the formulation of a NET model for the two-component, two-phase solid mixture from the last
section. For this material class, we have x = (χχχ,mmm,θ,ρ,φ) and

E[x ] =
∫

R
e(mmm,θ,∇χχχ,ρ,∇ρ,φ,∇φ) dv , e(mmm,θ,∇χχχ,ρ,∇ρ,φ,∇φ) =

1
2ρ

mmm ·mmm+ ε(θ,∇χχχ,ρ,∇ρ,φ,∇φ) , S[x ] =
∫

R
η(θ,∇χχχ,ρ,∇ρ,φ,∇φ) dv . (12)

These forms for E[x ] and S[x ] induce those DxA|R = ∂xa (x ∈ {mmm,θ}) and DxA|R = δxa (x ∈ {χχχ,ρ,φ}) for the GENERIC gradient of A = E,S
(a = e,η) in R, and that DxA|

∂R = ∂
∇xa|

∂Rnnn = 0 (x ∈ {χχχ,ρ,φ}) on ∂R via (4) and (7)2,3. In addition, 〈DxA,DxB〉 :=
∫

R DxA ·DxB dv. The
operator relations (δsa)∗g := g(∂sa)−∇ ·g(∂

∇sa) and (δvvva)∗g := g(∂vvva)−∇ ·g(∂
∇vvva) [e.g., 7, §4.1] are ”adjoint” or ”dual” to (9) in the sense that∫

R f{(δsa)∗g}dv =
∫

R g{(dsa)� f}dv and
∫

R fff · {(δvvva)∗g}dv =
∫

R g{(dvvva)� fff}dv hold via the divergence theorem and the GENERIC gradients.
Since momentum flux (stress) (3)3 is purely energetic (thermoelastic), χχχ and mmm are modeled as purely reversible. Consequently, χ̇χχ |irr = 000 and

ṁmm |irr = 000. On the other hand, mass diffusion and structural relaxation are modeled as purely irreversible; then ρ̇ |rev = 0 and φ̇ |rev = 0. Lastly, the
evolution of θ is general (e.g., thermal expansion, heat conduction). In this case, the reversible part ẋ |rev = L DxE of (11) reduces to χ̇χχ

ṁmm

θ̇

∣∣∣∣∣
rev

=

 0 Lχχχmmm Lχχχθ

Lmmmχχχ 0 Lmmmθ

Lθχχχ Lθmmm 0


 δχχχe

δmmme

δ
θ
e

 . (13)

Orthogonality L DxS = 0 and skew-symmetry LT = −L imply in particular Lχχχθ = 000, Lθχχχ = −LT
χχχθ = 000, and Lmmmθ = −Lmmmχχχ (δχχχη) ∗ (∂

θ
η)−1. Then

χ̇χχ = Lχχχmmm δmmme = Lχχχmmm χ̇χχ induces Lχχχmmm = III, Lmmmχχχ =−LT
χχχmmm =−III and Lmmmθ = (δχχχη)∗(∂

θ
η)−1. Via skew-symmetry 〈D

θ
B,LθmmmDmmmA〉=−〈DmmmA,LmmmθD

θ
B〉,

we then obtain Lθmmm =−LT
mmmθ =−(∂

θ
η)−1(dχχχη)�. In summary,

χ̇χχ |rev = Lχχχmmm δmmme + Lχχχθ δ
θ
e = mmm

ρ
,

ṁmm |rev = Lmmmχχχ δχχχe + Lmmmθ δ
θ
e = ∇ ·∂

∇χχχ
ψ ,

θ̇ |rev = Lθχχχ δχχχe + Lθmmm δmmme = 1
c ϖene ,

(14)

via (8)2, (13), θ = ∂
θ
ε/∂

θ
η, ψ = ε−θη, and c = ∂

θ
ε.

Consider next the irreversible part ẋ |irr = M DxS of (11). Assuming no coupling between ρ and φ, this reduces to θ̇

ρ̇

φ̇

∣∣∣∣∣
irr

=

M
θθ

M
θρ

M
θφ

M
ρθ

Mρρ 0

M
φθ

0 M
φφ


 δ

θ
η

δρη

δ
φ
η

 . (15)



Orthogonality M DxE = 0 implies in particular M
ρθ

=−Mρρ (δρε)∗ (∂
θ
ε)−1 and M

φθ
=−M

φφ
(δ

φ
ε)∗ (∂

θ
ε)−1, resulting in

ρ̇ |irr = Mρθ δθη+Mρρ δρη =−Mρρ δρψ̌ , φ̇ |irr = Mφθ δθη+Mφφ δφη =−Mφφ δφψ̌ . (16)

Given then Mρρ =−∇ ·θDDD∇ and M
φφ

= θm consistent with (5)2,3, M
ρθ

= ∇ ·θDDD∇(δρε)∗ 1
c and M

φθ
=−θm(δ

φ
ε)∗ 1

c follow. These together with
the symmetry relations 〈D

θ
B,M

θρ
DρA〉= 〈DρA,M

ρθ
D

θ
B〉 and 〈D

θ
B,M

θφ
D

φ
A〉= 〈D

φ
A,M

φθ
D

θ
B〉 imply

Mθρ = MT
ρθ =

1
c
(dρε)�∇ ·θDDD∇ , Mθφ = MT

φθ =−1
c
(dφε)�θm , (17)

via integration by parts, the divergence theorem, and the GENERIC gradients. Assuming next that heat conduction affects only the evolution of θ,
the split

Mθθ = MCθθ +MNθθ , MCθθ =−1
c

∇ ·θ2KKK ∇
1
c
, (18)

of M
θθ

into conduction MCθθ
and non-conduction MNθθ

parts is relevant. Then

MCθθ
δ

θ
η = − 1

c ∇ ·θ2KKK∇
∂

θ
η

c = 1
c ∇ ·KKK∇θ ,

MCθθ
δ

θ
ε = − 1

c ∇ ·θ2KKK∇
c
c = 0 .

(19)

The second of these combined with orthogonality M DxE = 0 yields

MNθθ
= −Mθρ (δρε)∗ 1

c
−Mθφ (δφε)∗ 1

c
= −1

c
(dρε)�∇ ·θDDD∇(δρε)∗ 1

c
+

1
c
(dφε)�θm(δφε)∗ 1

c

(20)

for MNθθ
via (17), and so

MNθθ δθη+Mθρ δρη+Mθφ δφη =−Mθρ δρψ̌−Mθφ δφψ̌ =
1
c

ϖdis (21)

via the fact that ρ̇ and φ̇ are purely irreversible, and (8)2. Besides being symmetric, note that M is positive semi-definite. With all component of M
now determined, the reduced form

ρ̇ |irr = M
ρθ

δ
θ
η + Mρρδρη + 0 = ∇ ·θDDD∇δρψ̌ ,

φ̇ |irr = M
φθ

δ
θ
η + 0 + M

φφ
δ

φ
η = −θmδ

φ
ψ̌ ,

θ̇ |irr = M
θθ

δ
θ
η + M

θρ
δρη + M

θφ
δ

φ
η =

1
c

ϖdis +
1
c

∇ ·KKK∇θ ,

(22)

of (15) is obtained.
In summary, combination of (14) and (22) leads to the GENERIC-based system

ρ̇ = ∇ ·θDDD∇δρψ̌ , ṁmm = ∇ ·∂
∇χχχ

ψ , c θ̇ = ϖ+∇ ·KKK∇θ , φ̇ =−θmδφψ̌ , (23)

for (ρ,mmm,θ,φ) via (8) and (10), in complete agreement with the corresponding SNET-based system (6).

Discussion

The current SNET- and GENERIC-based model formulations represent non-isothermal generalizations of the original isothermal formulations
of Cahn-Hilliard and Allen-Cahn in the spirit of [6]. They are also consistent with more recently GENERIC-based non-isothermal generalization
of the Ginzburg-Landau equation [e.g., 7]. As shown by the current SNET-based formulation, non-standard and higher-order gradients and fluxes
postulated on purely formal grounds [e.g., 8, 9] are completely superfluous. This is due in particular to the treatment of boundary conditions in the
current approach as part of the physical model formulation. Indeed, the choice of these has a direct influence on model behavior and predictions
(i.e., via solution of the evolution / field relations), especially in the non-local case.

For more details, the reader is referred to [4,5].
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