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ABSTRACT

Enzymes are natural machines that act as catalysts increasing the rates of biochemical reactions. They are present in all living beings and play
an important role in industrial chemical processes. The performance of enzymes depends on their structure, reactivity and the activation energy.
There is a close but non-trivial relationship between the kinetics of a single enzyme and the performance of a system of enzymes which is the
origin of some enzyme kinetic principles like the maximal metabolic flux [1]  from which the presence of infinite fluxes is possible [2].   A
decrease in the activation energy, however, leads to an increase of the enzymatic reaction rates, a decrease in the reaction time and an increase of
the entropy production. In that sense, a kinetic principle that predicts infinite rates will also predict and infinite entropy production, which seems
to be meaningless.  As the dynamics of the enzyme can be characterized by the entropy generation and the reaction time, the total  entropy
produced is in general a non-trivial function of the activation energy and can give us information about what are the most efficient configurations
of the enzyme. 

     The enzyme activity takes place at the mesoscopic level [3-4]. Enzyme changes can be modelled by a diffusion process through a potential
barrier in which its intermediate states are parametrized by a reaction coordinate,  and with the shape of the potential  barrier related to the
enzyme’s structure [5]. The rates can be obtained from the entropy production defined in the space of the reaction coordinate [3]. By using a
proposed general shape of a potential barrier, with and without local minima that correspond to intermediate states, we calculate the entropy
production [6]. From our mesoscopic thermodynamic analysis, we characterize the enzyme evolution by minimizing the total entropy produced.
The results show that in an enzymatic reaction without intermediates states, in order to minimize the total entropy produced, the enzyme evolves
towards configurations with the lowest activation energy. On the other hand, if intermediates states are present the configuration of the enzyme is
such that the total entropy produced corresponds to local or global minima.  According to these behaviours, it seems that in a scenario of a space
of structure configurations, the enzyme will choose those to allow the enzymatic process without intermediates states.  

We  study  the  catalytic  process  starting  from  the  enzyme-substrate  complex  state  to  produce  the  enzyme-product  complex  state,  in  a
homogeneous, isothermal and closed system. The entropy production of the enzymatic process at the mesoscale, taking place along the reaction
coordinate γ defined from 0 to 1, is given by:
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Here J is the current along the reaction coordinate, m  the chemical potential and aE  the activation energy. The linear law for the current is

then given by
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where L  is an Onsager coefficient which is in general a function of the state of the protein and the time. The chemical potential along the γ-

coordinate is given by
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Here j  is the potential barrier or enthalpic nature through which the diffusion process takes place. It is a function of the activation energy. By
inserting the expression of the current  into the continuity equation
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One obtains a Fokker-Planck equation of the Fokker-Planck type. By solving this equation, we can compute the entropy production and therefore
the total entropy produced, defined as
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where Rt  is the relaxation time of the process. 
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Figure 1: Potential barrier without intermediate
states, for a high driving force.
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Figure 2: Potential barrier with an intermediate
state, for a low driving force.
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Figure 3: Entropy production against time for different
activation energies.
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Figure  4:  The  lost  work  for  the  catalysed
process  without  intermediates  states,  against
the activation energy.
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Figure 5: The lost work against the activation
energy. The energy of the intermediate state is
fixed and close to the stable states energy. 

1 2 3 4 5 6 7 8
2.2

2.3

2.4

2.5

2.6

2.7

Dimless Activation Energy (E
a
/k

B
T)

D
im

le
ss

 L
os

t W
or

k 
(W

L
/k

B
T

)

 

 

Figure 6: The lost work when the energy of
the  intermediate  state  increases
proportionally to Ea, for ΔEa fixed.



14th Joint European Thermodynamics Conference
Budapest, May 21–25, 2017

The proposed potential barriers are shown in Figs. 1 and 2 and are used in our calculations to study a general scheme in which an enzymatic
reaction takes place in a closed system. The entropy production calculated by using the potential barrier without intermediates states, Fig. 1, is
showed against time in Fig. 3, where the curves correspond to different values of the activation energy. The relaxation times (tR ) are indicated by
arrows. For this case, the lost work always increases when the activation energy increases (Fig. 4). Thus, it is expected that in order to perform
the enzymatic process with a minimal in the entropy generated, the enzyme has to evolve to a structural configuration with minimal energy
activation.

A more complex behaviour is observed for enzymatic processes with intermediate states, as the one shown in the potential barrier of Fig. 2. The
lost work computed as a function of the activation energy presents a local minimum, if the energy of intermediate state is fixed to some value and
the gap in the activation energy, ΔEa, is also fixed (Fig. 5). In this case, an additional result is shown in Fig. 6, where the lost work is computed
for a fixed value of the gap ΔEa. The lost work also exhibits a local minima and, interestingly, for sufficiently high values of activation energy it
starts to decrease.  One can thus expect that if the enzymatic process necessarily involves an intermediate state, the enzyme could evolve towards
a structural configuration with an activation energy that ensures a local minimum in the lost work for the process. There are, however, additional
scenarios to evolve towards a more efficient structural configuration. From Fig. 5, at low values of the activation energy and still in presence of
the intermediate state, the enzymatic process could take place at the lowest values of the lost work. Moreover, from Fig. 6 at high values of the
activation energy, where the energy landscape tends to be similar to the one shown in Fig. 1, the enzymatic process is more efficient. From this
behaviour, we can then conclude that the natural evolution of the enzyme to reach an efficient structural configuration is to avoid processes with
intermediate states.
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