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ABSTRACT

Studying of transport processes in non-equilibrium chemically reacting mixtures is of vital importance for aerospace applications, chemical
reactor technology and plasma-chemical technologies. Irreversible thermodynamics establishes phenomenological relations for fluxes in terms of
generalized thermodynamic forces [1; 2; 3] but cannot give expressions for the coefficients in these relations. On the other hand, kinetic theory of
strongly non-equilibrium gases is an efficient tool which allows closing fluid dynamic equations of reacting flows and provides algorithms for the
calculation of kinetic coefficients such as viscosity, heat conductivity, multi-component and thermal diffusion, chemical pressure and reaction rate
coefficients as functions of collision integrals [4; 5; 6].

For non-equilibrium flows, the generalized Chapman–Enskog formalism is commonly used to develop a closed self-consistent description of
fluid dynamics and transport processes [4; 5; 6]. In the case of strong deviation from equilibrium, the main idea is to separate collisional processes
to ”rapid” and ”slow” accordingly to the relation between characteristic times of various internal energy transitions and chemical reactions. The
number of slow processes in a system specifies the degree of non-equilibrium and the number of fluid-dynamic variables (and corresponding
fluid-dynamic equations) required for the closed flow description. In modern non-equilibrium fluid dynamics, different levels of flow description
are used [6]: the conventional one-temperature approach implying weak deviations from thermal equilibrium and highly non-equilibrium chemical
reactions; the state-to-state approach considering the internal (vibrational or ro-vibrational) energy exchanges as slow processes and thus suitable for
extremely non-equilibrium situations (the price for this is the great number of fluid-dynamic equations which have to be solved for the populations
of all internal energy states); and intermediate multi-temperature models suitable for thermal non-equilibrium and not as much detailed as the state-
to-state one. In the present work transport properties of thermochemically non-equilibrium reacting mixtures with internal degrees of freedom are
discussed in different approaches; the main focus is on generalized fluxes corresponding to scalar thermodynamic forces.

One-temperature approach. Consider the case of strong chemical non-equilibrium and weak thermal non-equilibrium:

τtr ∼ τint � τreact ∼ θ, (1)

τtr, τint are the characteristic times for the relaxation of translational and internal energy, τreact is the characteristic time of chemical reactions, θ

is the gas-dynamic time scale. Accurate theoretical models for the transport properties under this relation are developed on the basis of the kinetic
theory methods (see [5; 6] and other studies). The fluxes attributed to the tensor and vector thermodynamic forces (shear stress, mass diffusion, heat
flux) are widely studied in the literature. On the other hand, the fluxes associated to the scalar forces which in the present case are the chemical
reaction affinities and velocity divergence have not received as much attention. The cross coupling between chemical-reaction rates and mean
normal stress was brought forth by linear irreversible thermodynamics [1; 2; 7]. In general, linear irreversible thermodynamics deals only with the
case of small affinities and cannot give the expressions of the kinetic coefficients in the phenomenological relations; however some results can be
obtained in the frame of extended thermodynamics. Thus in [8], the existence of non-equilibrium (dynamic) pressure is indicated. More appropriate
methods to develop self-consistent models for scalar fluxes are based on the kinetic theory; they usually apply the generalized Chapman–Enskog
formalism [9; 10; 11; 5; 12]; recently the non-equilibrium pressure was found also using the regularized moment method [13].

The detailed one-temperature model of scalar fluxes under condition (1) is developed in [12]. The distribution function is expanded into the
series in the small parameter ε = τtr/θ. In the zero-order approximation of the Chapman–Enskog method corresponding to the inviscid (Euler) flow
equations, the distribution function is the Maxwell–Boltzmann one, and the stress tensor P becomes diagonal

P(0) =−pI. (2)

Here I is the unit tensor and p is the thermodynamic (hydrostatic) pressure. The rate of reaction r, ξ̇r, in the zero-order approximation is given by
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where ρc is the density of species c, L is the number of chemical species in a mixture, Mc is the molecular weight, ν
(r)
rc are stoichiometric coefficients

of reagents, k(0)f ,r is the zero-order forward reaction rate coefficient. The chemical-reaction characteristic
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is associated to the chemical affinity Ar defined as linear combination of the chemical potentials µc. In the last expression, RG is the universal gas
constant, T is the temperature. For instance, the affinity of an exchange reaction is introduced as

Ar,ex =
3
2

kT ln
mcmd

mc′md′
+ kT ln

Zint
c Zint

d
Zint

c′ Zint
d′
− kT ln

ncnd

nc′nd′
+(εc′ + εd′ − εc− εd) , (5)



k is the Boltzmann constant, mc is the mass of species c, Zint
c , nc are the internal partition function and number density of species c, εc is its formation

energy. Subscripts c, d are related to the reagents whereas c′, d′ to the reaction products.
Equation (3) is equivalent to the law of mass action (LMA). Therefore, in the one-temperature approach, LMA is valid in the zero-order

approximation of the modified Chapman–Enskog method.
Linear irreversible thermodynamics deals with chemical reactions whose departure from equilibrium is small∣∣∣∣ Ar
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According to (3), ξ̇
(0)
r represents a linear function of ωr. In the limit case of near equilibrium we can write
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It is important to emphasize that, in the zero-order approximation, the rate of chemical reaction r depends only on the affinity of the corresponding
reaction Ar and does not depend on the affinities of other reactions. Thus the cross effects between chemical reactions do not manifest in inviscid
gas flows. Moreover, it is evident that no connection between stress tensor and reaction rates arises in the zero-order approximation.

In the first-order approximation corresponding to the viscous (Navier–Stokes) fluid dynamic equations, the stress tensor is obtained as [12]

P =−pI−P(1). (8)

Denoting with π the sum of the diagonal terms of the stress tensor and after some manipulations, we obtain

P = πI+2µ(∇v) s
o . (9)

The traceless symmetric part of the stress tensor includes the shear viscosity coefficient µ, whereas the expressions for the normal mean stress

π =−p−RGT ∑
r

lvr ωr + lvv ∇ ·v, (10)

contains kinetic coefficients lvr, lvv. The coefficient lvv is the bulk viscosity; the coefficients lvr bring into account the cross effects associated to the
chemical reactions that contribute to build up the mean normal stress. Thus the existence of cross-coupling between chemical reactions and mean
normal stress predicted by linear irreversible thermodynamics [1; 7] is proven also by kinetic theory.

The expressions of the first-order reaction rates are derived in the form

ξ̇r = ξ̇
(0)
r + ξ̇

(1)
r (11)

where ξ̇
(0)
r is the LMA given by (3), and

ξ̇
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s
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with the corresponding kinetic coefficients lrv, lrs. Thus, in viscous gas flows, the reaction rates depend on the velocity divergence ∇ · v and,
therefore, the chemical reactions are influenced by the flow compressibility. Moreover, the existence of cross effects among the chemical reactions
themselves becomes evident because the rate of the rth reaction is affected by all the reaction characteristics ωs. It is also clear that LMA does not
hold in the first-order approximation, in the sense that it turns out to be just a partial contribution to the global expression of the reaction rate.

From the kinetic-theory results provided in [12], the Onsager–Casimir reciprocal relations, lrv = lvr, lrs = lsr turn out to be in force. These
reciprocal relations are valid even for phenomenological relations that are non-linear with respect to the chemical affinities.

In the case of small chemical affinities (6), the expressions of mean normal stress and reaction rates become linear functions of the affinities

π =−p+∑
r

lvr Ar + lvv ∇ ·v, (13)

ξ̇r =−∑
s
(l(0)rr δrs + lrs)As− lrv∇ ·v (14)

in full compliance with linear irreversible thermodynamics.
Algorithms for the calculation of kinetic coefficients lvv, lrv, lrs are developed in [6; 12]. They include reducing integral equations for the

distribution function to the sets of algebraic equations and their numerical solution. Coefficients of algebraic equations are the bracket integrals
which can be calculated if the cross sections of corresponding collisional processes are known.

To assess the role of the cross-coupling effects, the normal mean stress and the reaction rates have been evaluated in compressive and expanding
N2/N flows. As a compressive flow example, the flow behind a strong shock wave is considered. The initial conditions are: Mach number M0 = 15,
T0 = 293 K, p0 = 100 Pa. In Fig. 1a, the hydrostatic pressure p and the normal mean stress π calculated taking into account cross-coupling terms
are given as functions of the distance x from the shock front. One can see that the contribution of cross-coupling terms to the normal mean stress is
rather weak: taking them into account leads to a slight increase of π compared to the pressure p. The reaction rate ξ̇(0) calculated using the mass
action law (in the inviscid flow approximation) and ξ̇ taking into account the cross-coupling terms (in viscous flow approximation) are given in
Fig. 1b. The difference between ξ̇ and ξ̇(0) achieves 80%; the main contribution to this discrepancy is due to dissociation reactions.

A similar study has been performed for an expanding N2/N flow in a conic nozzle with an angle 21◦. The throat conditions are T∗ = 7000 K,
p∗ = 1 atm. The results are given in Fig. 2. Once again, the effect of cross-coupling terms on the normal mean stress is negligible whereas they
influence significantly the reaction rate; in this case the difference is attributed to the recombination reaction. One can see that close to the throat,
the cross-coupling terms even modify the qualitative behaviour of the reaction rate altering its sign.

It is worth mentioning that the same cross-coupling terms give different contributions to various fluxes. Strictly speaking, it is necessary to
include all the first-order correction terms for a physically consistent and correct simulation of viscous compressible flows. However, as it is shown
above, quantitatively physical effects involving symmetric coefficients may not have the same impact, and only numerical simulations based on
reliable data would safely establish which terms are important quantitatively and when they can be neglected.
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Figure 1: (a): Pressure, p, and normal mean stress, π; (b): Reaction rates in inviscid, ξ̇(0), and viscous, ξ̇, approximations as functions of the distance
x from the shock front.
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Figure 2: (a): Pressure, p, and normal mean stress, π; (b): Reaction rates in inviscid, ξ̇(0), and viscous, ξ̇, approximations as functions of the distance
x/R from the nozzle throat.

Internal energy relaxation. Relaxation of internal energy essentially complicates flow physics and its theoretical description. More sophisticated
theoretical models are required for accurate predictions of fluid-dynamic variables and transport properties. The state-to-state model is valid under
the following relation between the characteristic times

τtr� τint ∼ τreact ∼ θ. (15)

It is clear that the number of non-equilibrium processes greatly increases and includes now all internal energy exchanges (or, as is assumed in the
majority of state-to-state models, vibrational energy transitions). In the state-to-state transport model, diffusion of all excited states has to be taken
into account along with usual mass diffusion and thermal diffusion. The heat flux in this case depends on the temperature gradient as well as on the
gradients of all internal state populations [6], and under specific flow conditions, diffusion of internal states contributes significantly to the mass and
heat transfer.

Multi-temperature approach is based on the assumption that some kinds of internal energy transitions proceed faster than others. For instance
VV (vibration-vibration) transitions are much more probable than VT (vibration-translation) energy exchanges, which justifies such an assumption
for the case of vibrational non-equilibrium. This allows introducing temperatures of different internal modes [6]; populations of internal states
follow quasi-stationary distributions with corresponding temperatures Tint . The set of fluid-dynamic equations is noticeably reduced compared to
the state-to-state model and includes relaxation equations for internal energy. On the other hand, the expression for the heat flux becomes more
complicated (especially if the level populations are described by non-Boltzmann distributions) and depends on the gradients of internal temperatures
of molecular species.

While diffusion and energy fluxes differ essentially in the state-to-state and multi-temperature approaches, the stress tensor and production
rates associated with chemical reactions and internal energy can be calculated using the similar strategy as discussed above [14; 15; 16]. As a
result, the normal mean stress and rates of reactions/relaxation can be expressed as linear combinations of velocity divergence and affinities of
corresponding transitions [14]. The main difference is in the number and type of elementary transitions accounted in the production terms and in
the form of affinities. Indeed, the generalized affinities in the case of coupled internal energy relaxation and chemical reactions include the internal
energy variation during the collision (in the state-to-state approach) or the difference T −Tint (in multi-temperature models). For instance, in the
state-to-state approach, the generalized affinity of exchange reaction/vibrational energy transition takes the form [14]
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where i, k and i′, k′ are respectively the vibrational states of reagents and products in the reaction/energy transition, Zrot
ci is the partition function of

rotational degrees of freedom of a molecule c in the vibrational state i, nci is the population of the vibrational level i of c species, εc
i is its vibrational

energy.



For the multi-temperature model of vibrational relaxation, if nci are distributed according to the Boltzmann distribution with the vibrational
temperature T c

v , the generalized affinity is given by [14]
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Zvibr
c (Tv,c) is the non-equilibrium vibrational partition function.

Using the above definitions, in the zero-order approximation one can obtain the rates of chemical reactions and energy transitions in the form
similar to (3). It however differs from the LMA in its conventional form since it includes the dependence on the internal states populations and
internal temperatures through the values ωr. In the first-order approximation, the normal mean stress and the rates of reaction/relaxation can be
obtained in the symmetric form similar to (10) and (12), and the reciprocal Onsager–Casimir relations can be proven. It is interesting to note that
while multi-temperature models are developed in the frame of non-equilibrium thermodynamics, the generalized scalar thermodynamic force related
to internal energy relaxation is often introduced as the inverse temperature difference 1

T −
1

Tint
. Such a choice however does not yield symmetric

cross-coupling terms in the normal mean stress and reaction rates and does not guarantee the Onsager–Casimir relations for the kinetic coefficients.
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