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SUMMARY 
 
    There is a long history and an extensive literature of cubic equations-of-state, going back 140 years, from 
van der Waals 2-parameter to current research and compilations with 20+ parameters [1]. As the 
thermodynamic experimental measurements have improved in accuracy, to 5 or 6 figures, over the decades, 
these sophisticated cubic equations, that are extensively used for modern thermodynamic property data banks 
require an ever-increasing complexity and more fitted parameters [1].  
 
    The main reason for this progressive inadequacy is that the continuous cubic functional forms are 
fundamentally inappropriate in the vicinity of TC and in the supercritical mid-range between gas and liquid 
phases. A mesophase, confined within percolation loci that bound the existence of gas and liquid phases by 
higher-order discontinuities, has been identified [2]. A simple numerical differentiation of NIST equations-
of-state can demonstrate the the supercritical mesophase and observe the phase bounds, along any isotherm, 
of any fluid (e.g. CO2 Figure 1) for any of the 200 fluids in the NIST Thermophysical Property data bank 
[1]. These boundaries have been smoothed over by the equations-of-state used to parameterize the original 
experimental data. The difference between isothermal rigidity (ωT ) calculated from NIST equation-of-state 
for CO2 isotherms by a numerical differentiation, and values of the same property obtained from the velocity 
of sound (c) tabulation using the thermodynamic identity ωΤ = Mc2Cv/Cp (M is the molecular weight) can be 
used to obtain bounds of the mesophase [as defined by equations (1-4) below]. 

 

      
     

 Figure 1: Supercritical isotherms of CO2: 
the temperatures shown are in degrees Kelvin; the 
green dashed line is the percolation transition 
locus of bonded clusters (PB) that bounds gas; the 
blue dashed line is the percolation of available 
pockets (PA) that bounds the supercritical phase 
on the liquid side; the green and blue solid circles 
are the maximum observable gas density, and 
minimum liquid density along Tc i.e. 305K 
(purple). The region in between the percolation 
loci PB and PA is the supercritical mesophase.  

 
Within experimental uncertainties, p(T) is a 

linear function of ρ in the mesophase region; the 
origin of the linearity is the colloidal nature of the 
mesophase [3] with a supercritical linear 
combination similar to subcritical Lever rule. 

When appropriate functional forms are used for each phase separately, we find that the mesophase is linear 
and the negative and positive deviations for liquid and gas on either side are quadratic, each requiring only 
known virial coefficients, Boyle temperature (TB), critical temperature (TC), coexisting densities along the 
critical isotherm, and known virial coefficients b2(T) and b3(T). A remarkable finding is that for the gas 
phases below TB the fourth virial coefficient is everywhere zero within the experimental uncertainty. There is 
a rigidity symmetry between gas and liquid phases on either side of the mesophase reported previously [4].  

 
Rigidity, (ω)T, is the work required to isothermally and reversibly increase the density of a fluid; with 
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dimensions of a molar energy. This simple state function relates directly to the change in Gibbs energy (G) 
with density at constant T  

     ωT = (dp /dr)T = ρ(dG/dρ)T      (1) 
  
The rigidity isotherms from NIST Thermophysical Properties [1] for CO2 is shown in Figure 2. If 

equalities (2 to 4) thermodynamically define the percolation loci, it follows that at low density the 
percolation loci must approach the Boyle temperature (TB) by its definition. This is the temperature above 
which the 2nd -virial coefficient is positive and below which it is negative; at TB, p = ρkT. In the pressure-
density plane, the percolation loci exhibit maxima as density decreases and approach zero, i.e. the ideal gas 
limit at low pressures and densities. The same behavior is seen for other atomic (e.g. argon) and molecular 
(e.g. water) fluids. 

 

 

Figure 2:  Isotherms for the rigidity of fluid 
phases of carbon dioxide from NIST thermo-
physical tables [4]: the loci of gas and liquid-phase 
bounds according to the empirical criteria 
equations (2 to 4) are green (percolation line PB) 
and blue (percolation line PA) respectively; 
redlines are supercritical isotherms, blue lines are 
subcritical isotherms; purple isotherm is Tc 
(305K): Boyle temperature TB = 725K 
corresponding to a rigidity (RTB) 6.03 kJ/mol 
where R is the universal gas constant.

        The inequalities that distinguish gas from liquid 
are:-  

 GAS    ρ    <  ρPB   (δω/δρ)T   <  0      (2) 
 MESO    ρPB  > ρ  >  ρPA   (δω/δρ)T  =  0      (3)  
 LIQUID   ρ    >  ρPA   (δω/δρ)T   >  0     (4) 
 
It is clear from equation (1) that ω > 0, i.e. rigidity must always be positive thought it can be zero in two 

phase coexistence regions: Gibbs energy cannot decrease with pressure when T is constant. From these 
definitions moreover, not only can there be no “continuity” of gas and liquid but the gas and liquid states are 
fundamentally different in their thermodynamic description. Rigidity is determined by number density 
fluctuations at the molecular level, which have different but complementary statistical origins in each phase, 
hence the symmetry [3]. There is a distribution of many small clusters in a gas with one large void; there is a 
distribution of unoccupied pockets in the liquid with one large cluster. 

 
From Figure 2 the mesophase rigidity (ω) is obtained in terms of TB and TC and then we can represent the 

density bounds as a function as shown in Figure 3.  
 
 GAS    ρPB(T) = ρG(Tc) [ (TB-T)/(TB-TC) ]     (6) 
 MESO     ωT      = TB [1 – TB/(TB-Tc) + T/(TB-Tc)]    (5) 
 LIQUID   ρPA(T) = ρL(Tc) [ (TB-T)/(TB-TC) ]     (7) 
 
The observation of linearity is an empirical approximation; a more accurate scrutiny of the original 

experimental data could result in non-linearity of either or both of these equations for he density bounds. The 
pressure equations-of-state for any thermodynamic equilibrium state point can be obtained. The gas 
equation-of-state for an isotherm can be parameterized using the Mayer virial expansion. The mesophase 
pressure increases linearly with density the region 0 > T > TB and ρPB(T) > ρ < ρPA(T),  and for the ‘liquid’ 
we can use an empirical expansion, for all T and ρ > ρPA(T). The three  equations-of-state are as follows:- 
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 GAS     p (ρ,T) = kT (1 +  b2(T)ρ +b3(T)ρ2 +…..)    (8) 
 MESO    p (ρ,T) = pPB(ρ,T) + ωT (ρ−ρPB)     (9) 
 LIQUID   p (ρ,T) = pPA (ρ,T) + kT[(ρ−ρPA)+a2(ρ−ρPA) +a3(ρ−ρPA)2  … ] (10) 
 
For the temperature-density region 0 > T > TB and ρ < ρPA(T), equations (5 to 7) are based upon the 

assumption that there is a phase transition of the third-order at the mesophase bounds with a discontinuity in 
the density derivative of ω, i.e. the third derivative of Gibbs energy with respect to ρ at constant T along an 
isotherm. For temperatures above TB, the equation-of-state “LIQUID”, ρPA in equation (10) becomes zero 
and the coefficients an are the same as the Mayer virial coefficients bn (T) in equation (8). 

 

 

 
Figure 3: T(ρ) phase diagram for CO2 using 

data points obtained from NIST Thermophysical 
Properties compilation [1] indicating the 
percolation loci that bound the supercritical liquid 
and gas states: the green and blue dashed lines are 
the gas (PB) and liquid (PA) percolation transition 
loci respectively; coexistence densities are solid 
red points; the coexisting densities of the gas (ρG) 
anf liquid (ρL) at the critical temperature (Tc) are 
indicated by the arrows; TB is the Boyle 
temperature.

 
For the supercritical fluid at temperatures above TB, equation (8) up to order b4 is sufficient to reproduce 

the pressure with 5-figure accuracy, i.e. within the margin of the original experimental uncertainty, with a 
TRENDLINE regression > 0.999999, up to temperatures of 1000K and pressures up to 50 Mpa. For the gas 
phase, at all temperatures below TB, the 4th virial coefficient is essentially zero, within the uncertainty of the 
experimental data; all higher terms are negligible. Thus the equation-of-state of the whole ‘gas’ region in 
Figure 3 requires just the second and third virial coefficient, in the case of CO2.  

 
The above equations-of-state are fundamental to all atomic and molecular fluids and appear to be accurate 

up to second order, i.e. to quadratic terms for most of the 200 fluids in the NIST data bank for all 
temperatures below the Boyle temperature. We will report detailed comparisons and virial coefficients for 
the case CO2, and also some preliminary comparisons with experimental data and NIST equations, for the 
exemplary fluids argon and water. 
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