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LOOKING AT THE TSALLIS ENTROPY IN THE EYE
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ABSTRACT

In Information theory, Shannon [1] first introduced the concept of information gain or surprise I(pi) as

I(pi) = ln(1/pi) (1)

where pi denotes the probability of the ith event. The Shannon entropy S just happens to be the linear average of this fundamental concept. Apart
from some other properties of the logarithmic function, Shannon has particularly chosen this expression, since it allows events with zero probability
to have the maximum surprise i.e.

lim
pi→0

I(pi) = lim
pi→0

ln(1/pi) = +∞. (2)

One, however, does not need to study the information theory to be able to appreciate the importance of the above limit concerning the information
gain or surprise. Imagine now that you have the canonical distribution function pi = exp(−βεi) apart from the normalization factor. When this is
the case, the limit in Eq. (2) uniquely ensures the validity of the third law of thermodynamics since

lim
pi→0

ln(1/pi) = +∞ if and only if β−→+∞. (3)

In other words, this particular limiting behaviour of the information-theoretical gain or surprise ensures the validity of the third law of thermody-
namics in a statistical mechanical context.

The non-additive Tsallis entropy [2] also relies on the definition of the information gain or surprise. The sole change is that one uses the
q-deformed logarithms to obtain the Tsallis entropy instead of the usual logarithm for the Shannon entropy. This q-deformed logarithm usually
reads

lnq(x) =
x1−q−1

1−q
. (4)

It is then easy to see that the Tsallis entropy is the linear average of the surprise written in terms of the q-deformed logarithm i.e.

Sq = 〈lnq(1/pi)〉=
∑i pq

i −1
1−q

(5)

just as the Shannon entropy reads

S = 〈ln(1/pi)〉= ∑
i

pi ln(1/pi). (6)

However, the q-deformation in Eq. (5) partially preserves the limiting behaviour of the ordinary definition of the surprise in Eq. (2) since

lim
pi→0

lnq(1/pi) = +∞ (7)

only for q ∈ (0,1] [3]. In fact, one can see that

lim
pi→0

lnq(1/pi) =
1

q−1
(8)

for q ∈ [1,2) [3].
As one might already begin to suspect, the Tsallis entropy then satisfies the third law of thermodynamics only for q ∈ (0,1] [3]. To show

this explicitly, one can borrow the expression obtained from Bento et al. [4], which allows one to check the third law by referring to the micro-
probabilities pi. This expression reads

βn =
∂S

∂pn

(
∂U
∂pn

)−1
(9)

where n = 1, ...,N excluding the ground state and βn is the inverse temperature due to the nth energy level.
The third law test checks whether this inverse temperature βn approaches to infinity when {pn} → 0 as p0 = 1, implying that only the lowest

energy level is occupied while all the other levels are empty. Using the ordinary internal energy definition U = ∑i piEi, Eq. (9) together with Eq.
(5) yield



βn =−q lim
(pn,p0)→(0,1)

ln2−q(pn)− ln2−q(p0)

(En−E0)
= q lim

pn→0

lnq(1/pn)

(En−E0)
= +∞ (10)

which is valid only for the interval q ∈ (0,1] as expected, since the numerator on the far right side of the equation above is nothing but the term
limpn→0 lnq(

1
pn
) in Eq. (7).

Then, the questions remains as to whether we have an entropy definition for the super-additive region q > 1. In order to shed light on this issue,
we observe the Shannon entropy given by Eq. (6) and note that it can also be written as S = 〈ln(1/pi)〉=−∑i pi ln(pi) using the relation

ln(pi)+ ln(1/pi) = 0. (11)

A similar equation in the case of q-deformed logarithms read

lnq(pi)+ ln2−q(1/pi) = 0. (12)

Using the above relation, we obtain

Sq = 〈ln2−q(1/pi)〉= 〈− lnq(pi)〉=
∑i p2−q

i −1
q−1

. (13)

Note that we now have

lim
pi→0

ln2−q(1/pi) = +∞ (14)

only in the interval q ∈ [1,2). Therefore, one expects that the Tsallis entropy in Eq. (13) should conform to the third law of thermodynamics for the
interval q ∈ [1,2). In fact, a quick calculation using Eqs. (9) and (13) yields

βn = (q−2) lim
(pn,p0)→(0,1)

lnq(pn)− lnq(p0)

(En−E0)
= (2−q) lim

pn→0

ln2−q(1/pn)

(En−E0)
= +∞ (15)

which is valid only for the interval q ∈ [1,2). Note that the numerator on the far right side of the equation above is exactly limpn→0 ln2−q(1/pn) in
Eq. (14). Moreover, we have again made use of the ordinary internal energy constraint U = ∑i piEi.

To sum up the progress so far, we have seen that the non-additive Tsallis entropy has two distinct expressions for two distinct intervals [3]. One
has the usual expression

Sq = 〈lnq(1/pi)〉=
∑i pq

i −1
1−q

(16)

for the interval q ∈ (0,1] [3] and one has

Sq = 〈ln2−q(1/pi)〉= 〈− lnq(pi)〉=
∑i p2−q

i −1
q−1

(17)

for the interval q ∈ [1,2) [3].

The careful reader will notice that we did NOT use the escort definition of the internal energy constraint i.e. U = ∑i pq
i Ei

∑i pq
i

at all. The simple
reason for this is that we did not need to. In fact, if we maximize the entropy expressions in Eqs. (16) and (17) subject to the ordinary definition
U = ∑i piEi, we obtain the equilibrium distributions

1/pi = expq

(1+α+βEi

q

)
(18)

which is valid only for q ∈ (0,1], and

1/pi = exp2−q

(1+α+βEi

2−q

)
(19)

valid only for q ∈ [1,2), respectively. The expression expq(x) denotes the q-exponential defined as expq(x) = [1+(1−q)x]
1

1−q .
The distribution in Eq. (19) is what is called the escort distribution in the literature and it is a general practice to obtain it by using the entropy in

Eq. (16) together with the constraint U = ∑i pq
i Ei

∑i pq
i

. However, note that it is solely obtained from the ordinary internal energy definition U = ∑i piEi

here.
The expressions (16)-(19) form the complete Tsallis entropy framework. By adopting the complete Tsallis expressions, we have a theory which

conforms to the third law, yielding the correct surprise limits as an information-theoretical entropy and is Lesche stable. The alternative route
includes the ad-hoc use of the (2− q) transformation, a difficult-to-justify escort internal energy expression U = ∑i pq

i Ei

∑i pq
i

and breaking the linear
averaging scheme inherent in the core definition of the Tsallis entropy (see Eqs. (16) and (17)).

Before proceeding further, it is worth remarking that the preceding q-values are in full agreement with the ones obtained within the ”complete
Tsallis entropy” [5] formalism, which precedes even the 3rd law of thermodynamics regarding the core structure of the q-deformed logarithms.
Note that one has

lnq(x)+ lnq(1/x) =
x1−q + xq−1−2

1−q
6= 0 (20)

where x > 0 and Eq. (20) is the incompleteness property of the q-logarithm. This simple relation reveals that the q-logarithm cannot yield all values
in the set of real numbers contrary to the natural logarithm. On top of it, this restriction on the set of values deformed logarithm can take is generally
q-dependent just because of the incompleteness of the q-deformed logarithms. In other words, the results of the non-extensive theory may be the
ones chosen from those q values dictated by the narrower range of values limited by Eq. (20), instead of being fully imposed by the physical system
i.e. the Nature (please see Ref. [5] for more rigorous treatment of this issue).



Lastly, even though one adopts the aforementioned complete Tsallis expressions, we point out that one should also consistently maximize
the entropies. In this regard, we provide an explicit historical example from the first paper on the Tsallis entropy in the context of generalized
thermostatistics [6]. In this example, one maximizes the functional Φ as

Φ({pi},α,β) =
∑i pq

i −1
1−q

+α

[
n

∑
i=1

pi−1

]
+αβ(1−q)

[
n

∑
i=1

piεi−U

]
(21)

and obtains a q-exponential distribution. What is important to observe is that, as always, the canonical distribution should be recovered in the limit
q→ 1. In fact, this functional should yield the usual maximization procedure yielding the canonical distribution if the Tsallis entropy is indeed to
be a generalization of the Shannon entropy.

If one considers the limit q→ 1 in Eq. (21), one should also have α(1−q)→ 1 to recover the usual maximization functional Φ for the canonical
distribution. However, as q→ 1, one has α(1−q)→ 0, the only other option being a diverging α. In other words, in the limit q→ 1, the functional
Φ in Eq. (21) becomes

lim
q→1

Φ({pi},α,β) =−∑
i

pi ln pi +α

[
n

∑
i=1

pi−1

]
(22)

which is the functional for the micro-canonical distribution. In other words, one obtains the canonical distribution from the well-known Tsallis limit
q→ 1 by using the micro-canonical maximization procedure [7]. To put it even more strangely, the Tsallis theory implies that we should recover
the ordinary canonical distribution pi = exp(−βEi) only by assuming the normalization constraint ∑

n
i=1 pi = 1 [7].

What went wrong in the example above then? A brief moment of thinking is enough to convince one that the issue above stems from the process
of coupling the Lagrange multipliers as αβ(1−q). The lesson to be learned from the above example is then not to couple the Lagrange multipliers!

One might then be tempted to write the functional Φ in Eq. (21) without coupling and in terms of the escort distribution as

Φ({pi},α,β) =
∑i pq

i −1
1−q

+α

[
n

∑
i=1

pi−1

]
+β

[
∑i pq

i Ei

∑i pq
i
−U

]
(23)

Similarly, if we take the canonical limit q→ 1 in Eq. (23), one has

lim
q→1

Φ({pi},α,β) =−∑
i

pi ln pi +α

[
n

∑
i=1

pi−1

]
+β

[
∑i piEi

∑i pi
−U

]
(24)

The equation above shows that it is still not the ordinary canonical functional to be maximized. The crucial point to understand is that one now
has the term

[
∑i piEi
∑i pi

−U
]

in Eq. (24) instead of what should have been, namely, [∑i piEi−U ]. Note also that one cannot equate
[

∑i piEi
∑i pi

−U
]

to

the term [∑i piEi−U ], since the normalization ∑
n
i=1 pi = 1 is not ensured yet i.e. before the maximization procedure is carried out. The presence

of this additional multiplicative term ∑
n
i=1 pi = 1 in the functional before maximization has dire consequences such as violating the thermodynamic

structure of the ordinary thermodynamics [8].
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