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ABSTRACT

One of the major challenges in mechanics is to predict damage, cracks and fragmentation patterns. Besides the high demands on the modeling
side, the complicated structure and non-regular behavior of cracks turn numerical simulations of these problems into adifficult task. A promising
tool to overcome such difficulties are phase-field methods. The main idea behind it is to mark the material’s different states -orphases- by continuous
order parameter fields, and to let them evolve in space and time. Since the physical properties within the phases are all inall given, the evolving
structure is fully described by the position and motion of the phase interfaces. However, an order parameter -orphase-field- is by definition a
continuous field and thus, the moving boundaries are ’smeared’ over a small but finite length, i.e., phase-field models constitute so-called diffuse-
interface formulations, see Fig. 1.

Originally derived for diffusion problems, phase-field models are meanwhile used for a variety of interface problems like decomposition, phase
transformations or aging of a microstructure. The core of every model is a Landau free energy functional. For two phases and with phase-field
s(x, t) it states the potential energy of a bodyB ⊂R

3

E =
∫

B
Ψcon(s)+Ψsur(∇s) dV, (1)

whereΨcon(s) denotes a configurational energy density which controls thedecomposition of the phases andΨsur(∇s) is the interfacial or surface
free energy density. Additional fields may contribute to thephase evolution but are omitted here for brevity.

Phase-field models of fracture have gained attention only recently. Here, the phase-field indicates the state of the material which may be solid
(s= 1) or, if cracked, empty (s= 0). The fields(x, t) is controlled by an additional differential equation whichresults in a coupled field problem but
completely avoids the resolution of discontinuities.

For purpose of illustration let us consider a deforming solid with domainB ⊂ R3 and boundary∂B ≡ Γ ⊂ R2. Crack growth corresponds to
the creation of new boundariesΓ(t). Hence the total potential energy of a homogenous but cracking solid is composed of its bulk energy with free
Helmholtz energy densityΨbulk and of surface energy contributions from growing crack boundaries.

E =
∫

B
Ψbulk dV +

∫
Γ(t)

GcdS (2)

The fracture-energy densityGc quantifies the material’s resistance to cracking, for brittle fracture it corresponds to Griffith’s critical energy release
rate. However, the energy functional (2) cannot be optimized in general and even an incremental approach is challengingbecause of the moving
boundariesΓ(t). Highly sophisticated discretization techniques have been developed to solve such problems, e.g. cohesive zone models, the
extended finite element method, eroded finite elements or recently developed eigenfracture strategies. In a phase-fieldapproach to fracture the set
of evolving crack boundaries is instead replaced by a surface-density functionalγ(t) = γ(s(x, t)) and an approximation of the form

∫
Γ(t)

dS≈
∫

B
γ(t)dV , (3)

which allows to re-write the total potential energy of a cracking solid and to formulate the optimization problem locally.

E =

∫
B

(

Ψbulk+Gcγ
)

dV → optimum (4)

In potential (4) the material’s energy is again composed of two terms, a bulk energy densityΨbulk and a surface energy contributionGcγ. By
definitionγ is only different from zero along cracks.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

horizontal cut

p
h

as
e-

fie
ld

Figure 1: The phase-field shows a crack in a 3-point bending test. On the right, the with of the crack zone for different length-scale parameterslc is
illustrated by the decay of phase-field parameters in the converged state.



Optimization of the potentials (1) or (4) leads to evolutionequations for the phase-fields(x, t). For a simple ordering type of phase-field,
the variation of energy leads the wanted driving force, ˙s= −cδsE. Herein and belowc,c1,c2, . . . ,c4 ∈ R+ denote unspecified constants. The
corresponding Euler-Lagrange equation is typically namedAllen-Cahn equation and has the form of a simple reaction-diffusion equation.

ṡ= c1φ(s)+c2△s (5)

In this formulationφ(s) denotes the reaction term, e.g.φ(s) = 2s3−s. If the phase-field variable is a conserved quantity like mass concentration or
volume fraction, its evolution has additionally to accountfor the continuity equation which leads to an evolution equation of Cahn-Hilliard type.

ṡ= c3△φ(s)−c4△△s (6)

Obviously, there is no general phase-field evolution equation but instead the specific formulation has to map the physicsof the underlying problem.
In this contribution we apply different phase-field models to simulate damage in solids of linear-elastic and non-linear materials.

Continuum mechanics

A material point of a solid in its reference configurationB0 is labeled byX = (X1,X2,X3)
T and deforms during a time interval[0, t̄] with a

mapping

χ(X, t) : B0× [0, t̄]→ R
n. (7)

We denotex= χ(X, t) with the gradient of the deformationF : B0× [0, t̄]→ Rn×n.

F = ∇Xχ =
∂χ
∂X

(8)

The elastic boundary value problem follows from the balanceof linear momentum,

∇X ·P+ B̄= ρ0v̇ in B0× [0, t̄], (9)

whereP is the first Piola-Kirchhoff stress tensor;ρ0 denotes the mass density,B̄, T̄ the prescribed body force and traction, andv the material velocity.
The boundary of the solid is subdivided into displacement and traction boundaries∂Bu

0 , ∂Bσ
0 with ∂B0 = ∂Bu

0 ∪∂Bσ
0 , ∂Bu

0 ∩∂Bσ
0 = /0 and

x= x̄ on ∂Bu
0 × [0, t̄] and PN= T̄ on ∂Bσ

0 . (10)

The initial conditions are
x(X,0) = x0 and v(X,0) = v0 in B0. (11)

Let Ψbulk(F ,T,s, . . .) be the local energy density of the bulk material. There may beadditional dependencies ofΨbulk, e.g. on other phase-fields
or on internal variables, but we will restrict ourselves here to an isotropic non-linear elastic material with one or twophases. This material will
develop damage and/or cracks. From physics we know that fracture requires a local state of tension whereas the compressive part of the deformation
does not contribute to crack growth. This requires a split ofthe bulk energy into compressive and tensional parts, cf. [2; 4; 7].

Phase-field evolution

The evolution equations for both, conservative and non-conservative phase-fields may be re-stated in a general form

ṡ=−MY(x,s), (12)

whereM denotes a kinematic mobility [1/sec] andY(x,s) summarizes all (dimensionless) driving forces which typically represent a competition of
bulk and surface forces, cf., e.g. [1; 9].

In phase-field fracture such a driving force results from a release of stored elastic energy of the body into the formationof free surfaces. Typically
it is derived from an energy potential and we reformulate potential (4) as

E =
∫

B

Gc

lc
(Ψ̄e+ lcγ
︸ ︷︷ ︸

Ψ̄

)dV with Ψ̄e =
lcΨ
Gc

. (13)

For normalization we introduce here a potentialΨ̄ which summarizes elastic and fracture energy contributions, Ψ̄ = Ψ̄e+ lcγ, and a characteristic
length lc which corresponds to half of the diffuse ’crack width’, i.e.the transition zone between intact and broken material. Thesurface-density
functionalγ may be understood as a wavenumber of the moving disturbance;it characterizes the shape of the diffuse zone. By definition, functionγ
has a small support and is symmetric to the ’real’ crack path.In general it is defined as a function of the phase-field parameter s solely,γ = 1/lc f (s).
Then, an ansatz of the form

f (s) = c0|1−s|2+c1l2c |∇s|2+c2l4c |△s|2+c3l6c |∇
3s|2+ . . . (14)

can be made. Inserting it into (3) and minimizing the corresponding potential (13) analytically, leads for the simplestuniaxial case to an exponential
solution of the forms= 1−exp(−|x|/lc). Now we determine the constantsc0,c1,c2,c3, . . . in such a way, that this disturbance is approximated
properly. In consequence we obtain for the surface-densityfunction a second order approximation of the form

γ =
1

2lc

(

(1−s)2+ l2c(∇s)2
)

. (15)



Figure 2: Model with loading conditions and computed phase-field distribution for mode I, mode II and mode III fracture.

The consideration of higher order terms gives an overall continuous analytical solution. Approximating the corresponding disturbances= 1−
exp(−|x|/lc) · (1+ |x|/lc), the fourth order crack-density functional reads

γ =
1

4lc

(

(1−s)2+2l2c (∇s)2+ l4c(△s)2
)

. (16)

Note that an approximation (14) with the first term only describes a sharp transition and would result in the typical difficulties of moving discontinu-
ities. The gradient term(∇s)2 regularizes the crack zone and renders the method non-local. The additional Laplacian in (16) affects the curvature of
the diffuse interface approximation and smoothes the transition. We would like to emphasize that gradient terms are known from continuum damage
mechanics. However, in opposite to a damage variable here the material’s state is well defined only for phase-field parameters= 1 (intact) ands= 0
(broken). The transition zone is a consequence of the regularized model and an intermediate value 0< s< 1 state has no physical meaning.

In a variational approach the driving force of equation (12)is derived from the potential energy of the cracked body (4) or its normalized energy
density in (13), i.e.,

Y = δsΨ̄ = δs
(
Ψ̄e+ lcγ

)
=Ye+ lcδsγ (17)

whereYe summarizes the normalized crack driving force andlcδsγ represents a kinematic fracture resistance. It evolves forthe second order
crack-density approximation (15) and for the fourth order crack-density approximation (16) to

lcδsγ =−(1−s)− l2c△s and lcδsγ =−
1
2
(1−s)− l2c△s−

1
2

l4c△△s, (18)

respectively. The dependence of the elastic energy termΨ̄e(F ,T,s) on the phase-fields can be modeled in different ways. In the simplest case, a
linear-elastic bulk energy, i.e.̄Ψe

0 =
1
2ε : C̄ε with normalized elasticity tensor̄C= lc/GcC(T), is multiplied with a degradation function,

Ψ̄e = g(s)Ψ̄e
0 . (19)

This functiong(s) is such that in regions where the material is broken (s= 0), the contribution to the elastic energy is zero, while in the intact
regions the elastic energy contribution recovers the one prescribed by the material’s energy density.

A variational functional with quadratic degradation function was first introduced by Francfort, Marigo [5] and with slight modifications this
ansatz has become very popular since, see, e.g., Miehe et al.[8] and Borden et al. [3]. Here the local energy function is ofthe form

Y = δsΨ̄ with Ψ̄ = s2Ψ̄e
0+

1
2lc

(1−s)2+
lc
2
|∇s|2 , (20)

which corresponds to (17) with a second order crack-densityapproximation (15).
A derivation of the driving force from an energy potential, however, is not necessary for a phase-field approach to fracture. Likewise the driving

force can directly be modeled by a classical failure criterion. In general, the phase-field fracture approach offers many new opportunities in fracture
simulations
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