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ABSTRACT

The critical step in the formulation of complete set of governing equations for motion of continuous medium is the mathematical description
of the behaviour of the specific material of interest. The material specific behaviour is characterised via constitutive relations that provide a link
between the response of the material and the primitive state variables. (For example, if the material of interest is a fluid, then one needs to find a
relation between the Cauchy stress tensor T and the heat flux vector jjjq, and the state variables, which are in the case of homogeneous incompressible
fluid the velocity vvv and the temperature θ.) If only the macroscopic response of the material is of interest, then the constitutive relations should be
preferably expressed in terms of macroscopic quantities only, and the involved quantities should have a good macroscopic physical interpretation.

Apparently, the specification of constitutive relations requires one to use various additional concepts that are usually based on utilisation of
thermodynamic of continuous medium. Rajagopal and Srinivasa [1] have argued that the concept of “maximisation of the rate of entropy production”
can be very fruitful in the specification of constitutive relations for the response of complex materials. In particular, Rajagopal and Srinivasa [1]
claim that

a specific choice among a competing class of constitutive functions can be made so that the state variables evolve in a way that
maximizes the rate of entropy production.

We shall clarify this concept by the analysis of a very simple fluid model – the incompressible Navier–Stokes model. Further, we also document
as how to use this concept in the analysis of the response of a canonical model for complex fluids – the incompressible Maxwell/Oldroyd-B model.
In the latter case the concept of “maximisation of the rate of entropy production” is used jointly with another fruitful concept, namely with the
concept of “evolving natural configuration”, see Rajagopal and Srinivasa [2, 3] and Rajagopal and Srinivasa [4].

The incompressible Navier–Stokes fluid and incompressible Maxwell/Oldroyd-B fluid models must be dealt with in any theory of constitutive
relations, hence they provide a nice example that allows one to compare the current approach with other existing thermodynamic approaches to the
theory of constitutive relations.

Figure 1: Asphalt concrete (cross-section through a sample 10cm×5cm, greyscale image). The response of apparently complex materials can be in
many processes described by rate type viscoelastic solid/fluid models.

Naturally, the concepts of “maximisation of the rate of entropy production” and “evolving natural configuration” have been used in much more
demanding settings that go beyond Navier–Stokes fluid and standard viscoelastic rate type models. Concerning viscoelastic materials, the interested
reader is referred to Karra [5] and Karra and Rajagopal [6] who discuss thermo-oxidative degradation of polyimides, series of papers by Barot et al.
[7], Sodhi and Rao [8], Moon et al. [9] and Sodhi et al. [10] discussing shape memory polymers including light activated shape memory polymers,
and numerous papers on mechanical response of asphalt and asphalt concrete, see Krishnan and Rajagopal [11, 12, 13], Narayan et al. [14, 15],
Málek et al. [16, 17] and Nivedya et al. [18]. Note that especially asphalt concrete, see Figure 1, is, due to its internal structure, a material that poses
a real challenge for mathematical modelling. Further, crystallization in polymers is dealt with in Rao and Rajagopal [19] and the follow-up works
by Kannan et al. [20], Kannan and Rajagopal [21, 22] and Kannan et al. [23], coupling of viscoelastic response with chemical reactions is studied
in the context of vulcanisation of rubber in works by Kannan and Rajagopal [24] and Kundurthi et al. [25], see also Hall and Rajagopal [26].

Trivial example – incompressible Navier–Stokes fluid

Let us start with an extremely oversimplified setting that allows one to exemplify the maximisation procedure. We consider homogeneous
incompressible heat non-conducting fluid with the energetic equation of state in the form e =def ê(η), where e denotes the specific internal energy,



[e] = J/kg, and η is the specific entropy, [η] = J/kg⋅K. The standard manipulation allows one to identify the entropy production ξ in the generic
evolution equation for the entropy

ρ
dη

dt
+div( jjjq

θ
) = ξ. (1)

In the present case the entropy production ξ =def
ζ

θ
is given by

ζ = T ∶D, (2)

where D denotes the symmetric part of the velocity gradient D =def
1
2 (∇vvv+∇vvv⊺). The aim is to identify the constitutive relation that is, in this case,

a formula for the Cauchy stress tensor T in terms of D, T = f(D).
Let us now assume that the material produces the entropy in such a way that the entropy production is given by the formula ζ = ζ̂, where

ζ̂ =def 2µD ∶D. (3)

(The second law is satisfied since the entropy production is clearly nonnegative.) Quantity ζ̂ is, besides the internal energy ê, yet another scalar
quantity that characterises the behaviour of the material. The specification of two scalar quantities ζ̂ and ê provides a characterisation of the entropy
production ability of the fluid and the energy storage ability of the fluid. The question is whether this characterisation of the fluid of interest is
sufficient for the specification of the constitutive relation between tensorial quantities T and D.

It turns out that the answer is positive provided that we appeal to the concept of maximisation of the entropy production introduced by Rajagopal
and Srinivasa [1]. The chosen entropy production ζ̂ must be compatible with the generic formula (2), hence we have a constraint

ζ̂−T ∶D = 0. (4)

This is the only equation that can be used in the analysis of the relation between T and D. Unfortunately, there exist many functions f such that
T =def f(D) solves the scalar equation (4). (We at the moment ignore the additional restrictions that would follow form the requirement on the
isotropy of the fluid.) Which one is the right one?

The concept of maximisation of the entropy production indicates that the right formula T = g(D) is the outcome of the following maximisation
procedure. Take fixed T, the ansatz for the entropy production ζ̂, and maximise the entropy production ζ̂ with respect to D subject to constraint (4)
and other imposed constraints. In our case, the other constraint is the incompressibility constraint,

TrD = 0. (5)

Consequently, the auxiliary function for the constrained maximisation problem reads

Φ =def ζ̂+λ1 (ζ̂−T ∶D)+λ2 TrD, (6)

where λ1 and λ2 are Lagrange multipliers. The condition on the extremum reads

∂ζ̂

∂D
+λ1( ∂ζ̂

∂D
−T)+λ2I = 0, (7)

which implies that

T = λ2

λ1
I+ 1+λ1

λ1

∂ξ̂

∂D
. (8)

The value of the fraction 1+λ1
λ1

can be recovered by taking the product of (7) with D, which, in virtue of the incompressibility condition (5), yields
1+λ1

λ1
= T∶D

∂̂ξ

∂D ∶D
= 1

2 . Consequently the complete formula for the Cauchy stress tensor reads

T = −πI+2µD, (9)

where π =def − λ1
λ2

denotes the pressure. The pressure is, as expected in the case of incompressible Navier–Stokes fluid, an additional unknown field
quantity that must be determined by the solution of the whole system of governing equations. The benefit of the maximisation approach is that
it automatically and explicitly indicates that the pressure is linked to the incompressibility constraint by the means of the corresponding Lagrange
multiplier. In this sense, one gets a clear interpretation of the pressure in incompressible fluid.

Finally, one might note that the maximisation procedure has automatically lead us to the constitutive relation that describes isotropic fluid. This
piece of information concerning the isotropy has not been supplied externally.

A lesson that comes from the analysis above is that the material behaviour can be fully specified by two scalar functions, the internal energy ê
and the entropy production ζ̂. The constitutive relation that has tensorial character is a consequence of the choice of the two scalar functions and
the concept of maximisation of the entropy production.

Complex example – incompressible Maxwell/Oldroyd-B fluid

A more complex example of the maximisation procedure is provided by the analysis of Maxwell/Oldroyd-B incompressible viscoelastic type
models. Here the ambition is to derive these models without any explicit reference to the underlying microstructure of the material. In particular,
if one wants to develop models for materials such as the asphalt concrete/binder, see Figure 1, one can hardly use microscopic concepts such as
conformation tensor that are closely related to the polymeric fluids.

The evolution of the microstructure is on the phenomenological level accounted for using the concept of natural configuration, see Rajagopal
and Srinivasa [2, 3] and Rajagopal and Srinivasa [27, 28]. Precise description of the use of this concept is, in the context of viscoelastic fluids,
developed in Rajagopal and Srinivasa [4], while Maxwell/Oldroyd-B models are discussed in Málek et al. [29]. In principle, the basic idea is to
virtually decompose the total deformation to a dissipative (viscous) part and the elastic part, see Figure 2. This decomposition is motivated by the
corresponding one-dimensional spring-dashpot analogue for Maxwell fluid, and it in fact embodies the notion of visco-elastic material.
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Figure 2: Viscoelastic Maxwell/Oldroyd-B type fluid – kinematics.

If the total deformation is seen as a composition of the two deformations, see Figure 2, then the total deformation gradient F can be written as

F = Fκp(t)G, (10)

where Fκp(t) and G are the deformation gradients of the partial deformations. Motivated by the standard relation dF
dt = LF between the spatial

velocity gradient L =def ∇vvv and the deformation gradient F, one introduces new tensorial quantities Lκp(t) and Dκp(t) defined as

Lκp(t) =def
dG
dt

G−1, Dκp(t) =def
1
2
(Lκp(t) +L⊺κp(t)) . (11)

The material time derivative of the left Cauchy–Green tensor Bκp(t) =def Fκp(t)F
⊺

κp(t)
associated to the instantaneous elastic (non-dissipative) re-

sponse1 then reads
dBκp(t)

dt
= LBκp(t) +Bκp(t)L

⊺−2Fκp(t)Dκp(t)F
⊺

κp(t) . (12)

The last formula reduces, using the definition of the upper convected derivative
▽

A =def
dA
dt −LA−AL⊺, to the formula

▽

Bκp(t) = −2Fκp(t)Dκp(t)F
⊺

κp(t) . (13)

This formula enables one to take time derivatives of Bκp(t) which in turn enables one to derive a counterpart of (1), provided that one has an ansatz
for the internal/free energy.

Since Bκp(t) represents the elastic (non-dissipative) part of the response, it should naturally enter the formula for the internal/free energy of the
material. The reason is that the energy storage ability is in finite elasticity theory described in terms of the left Cauchy–Green tensor B =def FF⊺. But
in our case only a part of the total deformation is non-dissipative/elastic. Consequently, only Bκp(t) instead of B should take the role of an additional
variable in the formula for the internal/free energy.

This analysis motivates the choice of the free energy in the form

ψ̂ =def −cV
iNSE

θ(ln( θ

θref
)−1)+ µ

2ρ
(TrBκp(t) −3− lndetBκp(t)) , (14)

where θ denotes the temperature, θref is a fixed reference temperature, ρ denotes the constant density of the fluid, and cV
iNSE and µ are positive

constants. The first term in (14) represents the standard thermal contribution, while the second term in (14) is motivated by formulae for free energy
frequently used in the theory of finite elasticity. (See for example Saccomandi [34], Horgan and Saccomandi [35] or Horgan and Murphy [36] and
references therein for a list of stored energies used in the theory of elasticity.) Having specified formula (14), we have determined the energy storage
mechanisms in the fluid.

Straightforward differentiation then allows one to identify the entropy production, that is the counterpart of (2). In the present case one gets

ζ = [(T−µ(Bκp(t))δ
) ∶D+µ(Cκp(t) − I) ∶Dκp(t)]−

jjjq ●∇θ

θ
, (15)

where Cκp(t) =def F⊺κp(t)
Fκp(t) . Finally, if we specify entropy production mechanism in the fluid via formula

ζ̂ =def 2νD ∶D+2ν1 Tr(Fκp(t)Dκp(t) (Fκp(t)Dκp(t))
⊺)+κ

∣∇θ∣2
θ

, (16)

where ν, ν1 and κ are positive constants, then we get a counterpart of (3), and we are ready to employ the maximisation procedure outlined in the
previous section.

This time, we maximise entropy production with respect to D, Dκp(t) and ∇θ, and we again take into account the additional constraint of
incompressibility. (See Málek et al. [29] for details.) The procedure finally leads to the constitutive relations

T = −πI+Tδ, Tδ = 2νD+µ(Bκp(t))δ
, (17a)

1The notion of instantaneous elastic response is related to the behaviour of the material in creep and stress relaxation tests. This requires one to investigate the
response of nonlinear systems governed by differential equations to stimuli with jump discontinuities. Convenient mathematical tools applicable in this setting have
been discussed in Průša and Rajagopal [30, 31], Řehoř et al. [32] and Průša et al. [33].



and
jjjq = −κ∇θ. (17b)

Moreover, it turns out that the right hand side of (13) can be expressed in terms of Bκp(t) only, namely

ν1

▽

Bκp(t) +µ(Bκp(t) − I) = 0. (17c)

The constitutive relations are then exploited in the balance equations which leads to the governing equations used in the seminal paper by Oldroyd
[37]. Indeed, upon defining S̃ =def µ(Bκp(t) − I)+2νD and p =def π+ µ

3 TrBκp(t) −µ, we end up with constitutive relations

T = −pI+ S̃, (18a)

ν1

▽

( S̃
µ
)+ S̃ = 2(ν1+ν)D+2ν1

▽

(νD
µ

), (18b)

which is exactly the form used by Oldroyd [37].
Having commented on the most important steps in the derivation of Maxwell/Oldroyd-B model, let us now summarise the benefits of the current

approach:

1. Quantity Bκp(t) has a direct interpretation in terms of kinematics of the material of interest. In particular, there is no need to use the concept of
conformation tensor or vaguely interpret the additional tensorial variable as a convenient internal parameter.

2. The evolution equation for Bκp(t) is a direct consequence of the assumed kinematics of evolving natural configuration. In particular, the upper
convected derivative appears naturally in the governing equations.

3. The pressure is interpreted in terms of Lagrange multiplier enforcing the incompressibility constraint.

Note that by changing the ansatz for the specific Helmholtz free energy ψ̂ and entropy production ζ̂, one can clearly develop models that can
describe various types of material response. Moreover, the underlying kinematics can be more involved than that shown in Figure 2, more complex
spring-dashpot analogues can be used as well, see for example Karra and Rajagopal [38].

Conclusion

The concept of maximisation of the rate of entropy production and the concept of evolving natural configuration are useful concepts in the
construction of mathematical models (constitutive relations) for the response of complex materials. Remarks on the links between the concept
of maximisation of the rate of entropy production and other concepts in non-equilibrium thermodynamics such as gradient dynamics can be found
for example in the recent work by Janečka and Pavelka [39].

The introduced concepts are of importance especially in the settings where the specification of constitutive relations requires one to use purely
phenomenological arguments, which is the case in many engineering applications. Some of the successful applications in the context of viscoelastic
materials have been discussed in this abstract. References to other applications, such as nonlocal field theories, see for example Heida and Málek
[40] and Heida [41], Heida et al. [42], can be found in review works Málek and Rajagopal [43] and Málek and Průša [44].
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[39] A. Janečka and M. Pavelka. Gradient dynamics and entropy production maximization. ArXiv e-prints, October 2016.
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