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INTRODUCTION 

 

 Thermodynamics can assess the behavior of systems at or 

near thermodynamic equilibrium, systems that are some 

distance from equilibrium and can return to equilibrium, and 

systems that are far from equilibrium and constrained by 

gradients (thermodynamic forces). The systems that are far 

from global equilibrium are stochastic in nature with varying 

spatial and time scales. The thermodynamic branch (Fig. 1) 

designates these three different situations as linear and 

nonlinear regions. Dissipative structures may emerge in order 

to reduce or degrade the gradient(s) and if dynamics and/or 

kinetic conditions are favorable for energy coupling [1,2].  
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Figure 1. Thermodynamic branch and distance from global 

equilibrium [8]. 

  

In eukaryotes, oxidative phosphorylation occurs in 

mitochondria, while photophosphorylation occurs in 

chloroplasts to produce adenosine triphosphate (ATP). 

Oxidative phosphorylation involves the reduction of O2 to 

H2O with electrons donated by nicotinamide adenine 

dinucleotide (NADH) and flavin adenine dinucleotide 

(FADH2) in all aerobic organisms. After carbon fuels are 

oxidized in the citric acid cycle, electrons with electron-

motive force is converted into a proton-motive force. A 

protein structure called ATP synthase, or the FoF1, couples the 

energy of the proton electrochemical potential gradient to ATP 

synthesis, or the energy of ATP hydrolysis in F1 to the proton 

translocation through the subunit Fo rotation (Fig. 2) [3].  

 
Figure 2. ATP-synthase (ATPase) couples ATP production to proton 

electrochemical potential gradient created by the respiration. ATP-

synthase can either produce ATP driven by a proton gradient or 

hydrolyze ATP to pump protons, depending on conditions [2,3]. 

 

 Energy production, storage, and conversion to maintain the 

nonequilibrium state form the basis for bioenergetics [2]. The 

hydrolysis of ATP is coupled [1] to synthesizing protein 

molecules, transporting ions and substrates, producing 

mechanical work, and other metabolic activity. ATP 

hydrolysis depends on the ratio of [ATP]/[ADP][Pi]. The need 

for energy by the cell regulates the tricarboxylic acid cycle, 

which acts in concert with the electron transfer chain and the 

ATPase to produce ATP in the inner mitochondrial membrane. 

The cell has limited amounts of ATP, adenosine diphosphate 

(ADP), and adenosine monophosphate (AMP). When ADP 

levels are higher than the levels of ATP, the cell needs energy, 

and hence NADH is oxidized rapidly and the tricarboxylic 

acid cycle is accelerated. When the ATP level is higher than 

the levels of ADP, the cell has the energy needed, hence, the 

electron transport chain slows down [2,3]. 

 Molecular motors and pumps operate far from global 

equilibrium and convert the chemical energy released from 

the hydrolysis of ATP into mechanical work by coupling to a 

heat reservoir, a work reservoir, and particle reservoirs for 

ATP, adenosine diphosphate ADP, and inorganic phosphate 

(Pi). The ATPase usually synthesises ATP but can also work 

as a motor by hydrolyzing ATP [4]. Each motor state 

represents an ensemble of molecular conformations of the 
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motors is constrained by the FT, which is valid far from equilibrium and can provide a mathematical expression for the 

probability that entropy will flow in a direction opposite to that dictated by the second law of thermodynamics for a finite 

nonequilibrium system in a finite time.  



 

enzyme that are thermally equilibrated. The states of enzyme 

together with the possible transitions between neighboring 

states create a dynamic network, which may be described by a 

continuous-time Markov process (or master equation) on this 

network [5]. Molecular motors, in nonequilibrium steady 

states, have net flows and require a continuous input of 

material, energy, and information to maintain their self-

organized steady state as they continuously dissipate net 

energy [2,6]. 

Many motor proteins can generate directional net 

movement, including the muscle motor protein myosin and 

the kinesin proteins of microtubules [4,5]. Muscle fibers 

lengthen and contract in small volume changes to perform 

mechanical work as they utilize chemical energy released by 

the hydrolysis of ATP.  

 The fluctuation theorem (FT) relates the probability p(στ) of 

observing a phase-space trajectory with entropy production 

rate of στ over time interval τ, to that of observing a trajectory  

with entropy production rate of –στ  
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where kB is the Boltzmann constant. This result describes how 

the probability of violations of the second law of 

thermodynamics becomes exponentially small as τ or the 

system size increases. FT relates the work along 

nonequilibrium trajectories to the thermodynamic free energy 

differences, and applicable to single molecule force 

measurements [3,7,8]. 

 This review briefly discusses the latest state of art 

developments on molecular motors and their operations 

between back and forth movements with the FT, which may 

provide a new insight of describing them.  

 

MOLECULAR MOTORS  

 

The molecular walker such as biomolecular motor kinesin 

uses chemical energy provided by the hydrolysis of (ATP) to 

step in one direction along a macromolecular track (Fig. 3) 

with the power stroke causing of dissociation of one head 

from the binding site and moving to the next available binding 

site. Even at chemical equilibrium (affinity = 0), due to the 

thermal noise the molecular motor continues to step forth and 

back along a macromolecular track as well as keeps 

catalyzing back and forth conversions of ATP and ADP plus 

Pi. Equilibrium of molecular motor is a dynamic state in 

which every forward motion is cancelled with the microscopic 

reverse of that motion [9]. 
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Figure 3. Molecular walker with conversions of ATP and ADP plus Pi 

during back and fort actions [9]. 

 

Each head acts as an enzyme to catalyze the reaction 

between ATP and ADP + Pi. Using Michaelis-Menten kinetics 

overall equilibrium constant for (ATP = ADP + Pi) becomes

( ) / ( )e ATP ADP ATP ADPK k k k k     where kATP and kADP are 

the forward and backward dissociation constants. Also the 

enzyme bound form E[ATP=ADP Pi] is a common 

intermediate for back and front heads. The dissociation 

constants given by /ATP ATPk k   and ADP ADPk k   must be 

the same for front and back heads. These relationships 

between the rate constants are the thermodynamic constraints 

of the principle of microscopic reversibility. However, the 

ratios of the on and off rate constants for ATP and ADP 

/i ATP ATPs k k  at frond and back would not be the same; 

for example if sb/sf >>1 the binding/release of ATP would be 

much faster than binding/release of ADP at the back head and 

vice versa. This change would be possibly triggered by 

allosteric feedback initiated by a coupling mechanism 

represented by strain between the neck linker and the ATPase 

active site. Therefore, if excess levels of ATP exists then the 

reaction favors by mass action the hydrolysis of ATP and 

forward movement. If sb/sf < 1 then movement is backward 

where ATP is synthesized by the existence of strong force 

(load) [9]. A single molecule turnover time that is the time for 

one enzyme molecule to complete a reaction cycle fluctuates 

randomly; their effects average to zero over a long period of 

time or for a large number of molecules [10]. Their motion is 

unidirectional on average and stops at the thermodynamic 

equilibrium.  

An individual molecular motor (i.e. Brownian motor) may 

be mechanically equilibrated and serves between chemical 

and physical reservoirs that may be far from equilibrium with 

one another. This understanding may help design molecular 

machines [9]. Motor proteins are enzyme catalysts that 

dramatically accelerate the rate of hydrolysis to repeat a 

cyclical sequence capable of carrying out useful functions or a 

load. Recent advancements in single-molecule experimental 

techniques and the results of structural genomic projects may 

be very helpful in understanding protein functions and 

enzyme kinetics on the molecular scale [11]. 

Motor molecules play a key role in muscular contraction, 

cell division, and cell transport. For example, for the transient 

response of muscles, the fastest characteristic times of the 

motors are in the range of miliseconds. An enzyme or 

molecular motor stochastically undergoes transitions from one 

state to another creating either rotary or directional action. In 

such a transition, a chemical reaction may be involved like 

hydrolysis which transforms one molecule ATP to ADP and a 

phosphate [12]. These three molecular species are externally 

maintained at nonequilibrium conditions thereby providing a 

source of chemical energy (work) to the system. In each 

transition, this work will be transformed into mechanical 

work, dissipated heat, or changes in the internal energy [4,5].  

Molecular motors, over the course of their enzymatic cycle, 

perform work, as they move along a track distance Δx against 

a constant force F. In some motor models, enzymatic 

mechanisms explicitly are different from the work related 

mechanisms; for example, in the Huxley-Hill model motor 

force is generated within the biochemical step and work is 

subsequently performed when a motor relaxes within the 

potential well of a biochemical state [8]. According to 

fluctuating thermal ratchet model, motor force is generated 

when a ratchet potential is switched on and work is 

subsequently performed when a motor relaxes [11,13]. On the 

other hand, some recent studies support a chemical motor 

model in which reaction and space coordinates are intimately 

linked. Force is generated and/or work is performed with a 

thermally activated biochemical transition. For example, a 

motor structural change induced by ligand binding or by other 



 

effects might directly perform work. Most chemical motor 

models assume that it is the external work (Wext = FΔx), i.e. in 

moving the track, that is coupled to the free energy for that 

step [8]. Internal work, on the other hand may involve pulling 

out compliant elements in the motor, and is performed in 

stretching these internal elastic elements that are coupled to 

free energy ΔG. Motor enzymes, like myosin and kinesin, 

move along a track while catalyzing a hydrolysis reaction of 

ATP are self-consistent mechanochemical systems, in which 

the reaction mechanisms start and end with free enzyme, 

while the free enzyme is binded with the substrates and 

unbinded with products in some random order. The myosin 

protein uses the chemical energy released by the hydrolysis of 

ATP to create directed mechanical motion. All the myosin 

motor proteins share the same biochemical reaction pathway 

when hydrolyzing ATP. They operate far from equilibrium, 

dissipate energy continuously, and make transitions between 

steady states. The thermodynamic driving force of an 

enzymatic cycle Δμ, can be extracted by the nonequilibrium 

turnover time traces of single enzyme molecules in living 

cells that might be measurable experimentally [3,8,11].  

Modeling of motor proteins, such as kinesin and myosin-5, 

[13-15] must take into account the collective behavior that is 

the energy coupling between the internal biochemical cycle of 

a macromolecule and its external load such as random walk. 

These molecular motors are mechanochemical and stochastic 

systems, and take part in the cellular metabolism under far 

from equilibrium conditions. Molecular motors, over the 

course of their enzymatic cycle, perform work, as they move 

along a track a distance Δx against a constant force F. There 

are several models for explaining the relationship between a 

motor’s enzymatic mechanisms and its mechanisms for work 

production [6,8,13]. Most chemical motor models assume that 

it is the external work (Wext = FΔx), i.e. in moving the track is 

coupled to free energy ΔG; like myosin and kinesin, move 

along a track while catalyzing a hydrolysis reaction of ATP 

are self-consistent mechanochemical systems [8,13,15]. The 

driving force for a motor protein comes from the hydrolysis of 

ATP characterized by a two-state Markov process: 
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,  [ATP],  [ADP][ ]i i i rf f rb bA J k J k Pi     . Here A is 

the thermodynamic driving force called the affinity, Jrf and Jrb 

are the forward and backward reaction rates, respectively, Jr is 

the net reaction rate, and νi is the stoichiometric coefficient, 

which is positive for product and negative for reactants. For a 

reaction at isobaric and isothermal conditions, the affinity 

characterizes the distance from equilibrium [8].  

In some systems, experiments have verified an overall type 

of reversibility, such as ATP-synthase which can either 

produce ATP driven by a proton gradient or hydrolyze ATP to 

pump protons, depending on conditions. Symmetry could be 

applied to a system which couples binding and catalysis, 

when the entire system is analyzed. The chemical potential 

difference Δ  is a generalized force and measures the free 

energy change per consumed fuel molecule by the hydrolysis 

of ATP: ATP ADP+Pi  ATP ADP P       . The 

dissipation  for representative motor action is 

 

0extf v J          (2) 

 

Eq. (2) identifies the independent fluxes and forces [3]. These 

forces cause motion and ATP consumption characterized by 

fluxes (currents) that are average velocity v(fext,Δ) and 

average rate of ATP hydrolysis J(fext,Δ). Molecular motors 

mostly operate far from equilibrium (Δ ~ 10kBT) and the 

fluxes are not linearly dependent on the forces. However, if a 

linear flux force relationships hold due to multi inflection 

points [16]: 11 12extv L f L    ; 21 22extJ L f L    . Here 

L11 and L22 are the mobility coefficients, while L12 and L21 

(Onsgaer’s relation holds L12 = L21) are the mechano-chemical 

coupling coefficients for polar filaments. Inequality in Eq. (2) 

will be satisfied if Lii  > 0 and L22 L11   L12 L21 > 0. Thermal 

equilibrium (Δ =0, fext = 0) represents a singular point. When 

0extf v  , work is performed by the motor and the chemical 

work is the driving process, while 0J    requires that 

chemical energy is generated and the mechanical work is the 

driving process. When 0extf v   and 0J   , there is no 

single driving process nor driven process and dissipation is in 

the form of heat in the thermal bath. This may be passive 

system [8].  

The efficiency of energy coupling  is the ratio of output 

and input powers in the representatrive dissipation equation 
0 output power + input power 0extf v J        , and 

the efficiency becomes: ( ) / ( )ext pf X J   . In terms of the 

normalized flow ratio (j) and the normalized force ratio (x), 

the energy coupling efficiency becomes 

 

( ) / ( 1/ )jx x q q x         (3) 

 

where 
1/2

12 11 22/ ( )q L L L / ( )p oj J J Z  , /p ox X Z X , 

and /p oZ L L  [2,3]. Thus, the efficiency depends on the 

force ratio x and the degree of coupling q. The energy 

coupling efficiency is zero when either flow or force is zero. 

Therefore, at intermediate values of them, the efficiency 

passes through an optimum (maximum) 

 
2

2/ 1 1opt q q     
 

. Here, q represents a lump sum 

quantity for the various individual degrees of coupling of 

different processes [3,8].  

 

FLUCTUATION THEORY 

 

The thermodynamic driving force of an enzymatic cycle 

Δμ, can be extracted by the nonequilibrium turnover time 

traces of single enzyme molecules that might be measurable 

experimentally [17]. From chemical master equations under 

nonequilibrium steady state, the ratio between the probability 

of M forward turnovers P(dnt = M) and that of M backward 

turnovers P(dnt = M) is 
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where M is a positive integer [8,17]. Eq. (4) is the 

consequence of microscopic reversibility and general as long 

as the enzyme completes a full cycle, even when the enzyme 

molecules exhibit more complex kinetic pathways [17]. By 

introducing internal conformational states to the Brownian 

particle and to coupling the hydrolysis of ATP with the motor 

protein movement leads to the following reaction-diffusion 



 

system for the movement of a Brownian particle with internal 

structures and dynamics 
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where P(x,n,t) is the probability of a motor protein with 

internal state n and external position x, and kfnk is the 

transition rate constant from internal state n to state k when 

the protein is located at x. The states n and k, such as attached 

and detached states, driven by the ATP hydrolysis leads to a 

biased motion of the motor protein, in which the chemical 

energy of the hydrolysis of ATP is converted to the 

mechanical motion of the motor protein [8,17-19]. In general, 

the stationary solution of Eq. (5) will be far from equilibrium 

steady state with positive entropy production and heat 

generation. For an arbitrarily large ensemble of experiments 

from some initial time t = 0, consequence of the fluctuation 

theorem is that an ensemble average of the entropy production 

cannot be negative for any value of the averaging time t: 

0t  . This inequality is called the second law inequality. 

It can be proved for systems with time dependent fields of 

arbitrary magnitude and time dependence. However, it does 

not imply that the ensemble averaged entropy production is 

nonnegative at all times. The fluctuation theorems are related 

to the entropy production and valid for systems far away from 

thermodynamic equilibrium  

 Assume that a finite system is in contact with a heat bath at 

constant temperature and driven away from thermodynamic 

equilibrium by some external time-dependent force. The FT 

relates to the probability distributions of the time-averaged 

irreversible entropy production  . The theorem states that, in 

systems away from equilibrium over a finite time t, the ratio 

between the probability that   takes on a value A and the 

probability that it takes the opposite value, −A, will be 

exponential in At. Mathematically, the fluctuation theorem is 

expressed as 
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The system is finite and coupled to a set of baths, each 

characterized by a constant intensive parameter. The 

dynamics are required to be stochastic, Markovian, and 

microscopically reversible. The probabilities of the time-

reversed paths decay faster than the probabilities of the paths 

themselves and the thermodynamic entropy production arises 

from the breaking of the time-reversal symmetry of the 

dynamical randomness.  

The transient FT describes how irreversible macroscopic 

behavior evolves from time-reversible miscroscopic dynamics 

as either the observation time or the system size increases. 

The transient FT also shows how the entropy production can 

be related to the forward and backward dynamical 

randomness of the trajectories or paths of systems as 

characterized by the entropies per unit time [8]. For example, 

the Crooks fluctuation theorem was used to estimate the free 

energy difference associated to the unfolding of a RNA 

molecule [7]. The thermal bath allows macromolecules to 

exchange energy with the molecules of the solvent through 

the breakage of weak molecular bonds that trigger the relevant 

conformational changes. The amount of energies involved in 

single macromolecules is small enough for thermal 

fluctuations over timescales to be relevant in many molecular 

processes [9]. In thermodynamics of small systems, a control 

parameter may define the system’s state [13,15]; for example, 

a motor molecule can be described by an internal 

configuration {xi} and a control parameter x (there can be 

finite number of control parameters), then u({xi },x) is the 

internal energy of the system. Upon variation of the control 

parameter x, energy conservation yields 

{ }i i xx i

u u
du dx Q W

x x
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  (7)  

The total work done on the system is 0 ({ }, )
x f

W F xi x dx  , 

where xf is the perturbation for a time tf, and F({xi },x) is the 

fluctuating force acting on the molecule 

{ }({ }, ) ( / )i xi
F x x u x   . A quantity that characterizes the 

stochastic nonequilibrium process is the probability 

distribution of work values P(W) obtained along different 

trajectories. The average work over all trajectories 

( )W WP W dW    is larger than the reversible work and 

equal to the free-energy difference ΔG between the 

equilibrium states defined at x = xf and x = 0. If we define the 

dissipated work along a given trajectory as Wdis = W−ΔG, 

second law can be written as, Wdis ≥ 0. Under the assumption 

of microscopic reversibility (detailed balance), fluctuation 

theorems assert relations between the entropy production 

along a given forward and backward processes by [20,21] 
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where Pf(W) and Pb(W) are the work distributions along the 

forward and backward processes, respectively. Eq. (8) 

indicates that a steady-state system is more likely to deliver 

heat to the bath (W is positive) than it is to absorb an equal 

quantity of heat from the bath (W is negative) and hold for 

any finite time [20]. Nonequilibrium steady state systems 

always dissipate heat on average. 

The Crooks fluctuation theorem is used to estimate the free 

energy difference associated with the unfolding of a RNA 

molecule. In the experiment, a single molecule was repeatedly 

folded and unfolded. The periodic folding of a single 

molecule is analogous to the cycles of the kinesin 

displacement [18]. The Crooks theorem is also applied to the 

linear motor kinesin cycle [18]. Distinct forward and 

backward trajectories may have different probability weights 

if the system is out of equilibrium. For example, the 

probability for a driven Brownian particle having a trajectory 

from point ‘a to b’ is different from that having the same 

reverse trajectory from ‘b to a.’ The entropy production arises 

from the breaking of the time-reversal symmetry in the 

probability distribution of the statistical description of the 

nonequilibrium steady state [17].  

The reaction rate of a single enzyme molecule fluctuates, 

which is a general feature of enzymes. A single molecule 

turnover time, which is the time for one enzyme molecule to 

complete a reaction cycle, also fluctuates. Since these 

fluctuations are random, their effects average to zero over a 

long period of time or for a large number of molecules. 

Kinesin is a large protein which can attach to a load on one 



 

end and has two heads on the other end. It performs an 

asymmetric hand on hand walk along a microtubule dragging 

the load against an external force F and the viscous drag from 

the environment. Each step in this walk corresponds to a 

cycle, in which kinesin converts chemical energy released by 

the hydrolysis of one ATP molecule into useful work. The 

amount of energy of the hydrolysis of one ATP molecule is 

around 25kBT, where kB is the Boltzmann constant and T is the 

bath (environment) temperature. The probability of a 

successful forward step over that of backward step is [18,21]. 
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where Fst ≈ 7 pN is the stalling force and F is the external 

force. Eq. (9) shows that the maximum work kinesin can do 

against the external force is Fst∆l ≈ 13.3kBT, which is close to 

half of the input energy of 25kBT.  

To obtain the free energy change associated with the one 

step from observable data, the Crooks FT can be used [18]. 

Assume that the macroscopic initial and final states 1 and 2 

are the initial and final states, respectively in the kinesin 

cycle, and the external parameter λ measures the progress of 

the molecule from one pair of docking sites to the next. A 

backward step implies that the forward work (W = F∆l) is 

reversed. For the free energy G, the Clausius inequality 

implies W ≤ −ΔG. Initially the system is at state 1. If the Pf is 

the probability that the system ends up in state 2, giving out 

work W and the Pb is the probability that the system, now 

starting from state 2, ends up in state 1 giving out work −W 

when the evolution of λ is reversed. The Crooks FT states that 
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The probability ratio given in Eq. (10) implies that 

( / 2)[ ]stG l F F     where ΔG is the maximum work 

kinesin performs at constant temperature [8,18]. Ideally, all 

the energy available to the kinesin at the start of the cycle is 

about (2Fst ∆l = 26.6kBT) and is dissipated or goes to into the 

reversible work (ΔG). For isothermal docking we have 

Sfree−Sdock = qdock/T where Sfree and Sdock are the entropies of 

the free head and docked states, respectively. Part of the 

available work is left to be dissipated as heat by opposing the 

viscous drag or as excess kinetic energy to be absorbed by the 

docking site. Besides that, the cycle may fail, with the kinesin 

stepping backwards rather than forward; the actual average 

work is W F l     , where tanh [ ]
4

st
B

l
l F F

k T


 
    

 

is the average displacement [3,8].  

 
CONCLUSIONS 

 

FT applies to fluctuations far from equilibrium and requires 

knowledge of the initial distribution of molecular states, all 

time evolved final states at time t, and assumption of time 

reversal symmetry (all the equations of motion for either 

classical or quantum dynamics are in fact time reversible). 

One important implication from the FT is that molecular 

motors or even mitochondria in a cell, will spend part of their 

time actually running in ‘reverse’ and that these motors are 

able to generate work by taking heat from the environment. 

This is possible because there exists a symmetry relation in 

the work fluctuations associated with the forward and reverse 

changes as it is driven away from thermal equilibrium by the 

environment. FT may help understanding the molecular 

machines and hence design and manufacture of nanomotors 

and nanopumps by estimating rate constants or alternative 

reaction schemes. 

 

REFERENCES 

 
[1] Y. Demirel, Energy Coupling, in Information and Living 

Systems in Philosophical and Scientific Perspectives, eds. G. 

Terzis and R. Arp, MIT Press, Cambridge, 2011. 

[2] Y. Demirel, S.I. Sandler, Thermodynamics of Bioenergetics, 

Biophys. Chem., vol. 97, pp.87-111, 2002. 

[3] Y. Demirel, Nonequilibrium Thermodynamics: Transport and 

Rate Processes in Physical, Chemical and Biological Systems, 

3rd ed., Elsevier, Amsterdam, 2014. 

[4] U. Seifert, Fluctuation Theorem for a Single Enzyme or 

Molecular Motor. Europhys. Lett., vol. 70, pp. 36-41, 2005. 

[5] R. Lipowsky, S Liepelt, Chemomechanical Coupling of 

Molecular Motors: Thermodynamics, Network Representations, 

and Balance Conditions. J. Stat. Phys., vol. 130 pp. 39-67, 

2008. 

[6] J.E. Baker, Free Energy Transduction in a Chemical Motor, J. 

Theor. Biol., vol. 228, pp. 467-476, 2004. 

[7] D. Collin, F. Ritort, C. Jarzynski, S.B. Smith, I. Tinoco Jr and C. 

Bustamante, Verification of the Crooks Fluctuation Thorem and 

Recovery of RNA Folding Free Energies, Nature, vol.437, pp. 

231-234, 2005. 

[8] Y. Demirel, Nonequilibrium Thermodynamics Modeling of 

Coupled Biochemical Cycles in Living Cells, J. Non-Newtonian 

Fluid Mech., vol. 165, pp. 953-972, 2010. 

[9] R. D. Astumian, Microscopic Reversibility as the Organizing 

Principle of Molecular Machines, Nature Nanotechnol., vol. 7, 

pp. 684-688, 2012.  

[10] N. Dan, Understanding Dynamic Disorder Fluctuations in 

Single-molecule Enzymatic Reactions, Curr. Opin. Colloidal 

Interface Sci., vol. 12, pp. 314-321,2007. 

[11] C. Bustamante, J. Liphardt, F. Ritort, The Nonequilibrium 

Thermodynamics of Small Systems, Phys. Today, vol. July, pp. 

43-48, 2005. 

[12] Y. Sambongi, I. Ueda, Y. Wada, M. Futai, A Biological 

Molecular Motor, Proton Translocating ATP synthase: 

Multidiciplininary Approach for a Unique Membrane Enzyme, 

J. Bioenerg. Biomembr., vol. 32, pp. 441-448, 2000. 

[13] R.J. Sadus, Molecular Simulation and Theory for Nanosystems: 

Insights for Molecular Motors, Mol. Sim., vol. 34, pp. 23-27, 

2008. 

[14] H. Qian, A simple Theory of Motor Protein Kinetics and 

Energetic II, Biophys. Chem. vol. 83, pp. 35-43, 2000.  

[15] H. Qian, The mathematical Theory of Molecular Motor Move-

ment and Chemomechanical Energy Transduction, J. Math. 

Chem., vol. 27, pp. 219-234, 2000. 

[16] K.J.Rothschild, S.A. Ellias, AQ. Essig, H.E. Stanley, 

Nonequilibrium Linear Behavior of Biological Systems. 

Existence of Enzyme-mediated Multidimensional Inflection 

Points. Biophys. J., vol. 30, pp. 209-220, 1980.  

[17] P. Gaspard, Fluctuation Theorem, Nonequilibrium Work, and 

Molecular Machines, Proceedings of the 21st Solvay Conference 

on Chemistry, Brussels, Nov. 28-Dec. 1st (2008). 

[18] E.A. Calzetta, Kinesin and the Crooks Fluctuation Theorem, 

Eur. Phys. J. B, vol. 68, pp. 601-605, 2009. 

[19] Y. Demirel, Information in Biological Systems and Fluctuation 

Theorem. Entropy, vol. 16, pp. 1931-1948, 2014. 

[20] K. Shiroguchi, K. Kinosita, Myosin V Walks by Lever Action 

and Brownian Motion, Science, vol. 316, pp. 1208-1212, 2007. 

[21] M. Bier, Accounting for the Energies and Entropies of Kinesin 

as Catalytic Cycle Eur. Phys. J. B, vol. 65, pp. 415-418, 2008. 

 


